之前用的adam优化器一直是这样的: 没有细想内部参数的问题,但是最近的工作中是要让优化器中的部分参数参与梯度更新,其余部分不更新,由于weight_decay参数的存在,会让model.alphas都有所变化,所以想要真正部分参数 参与更新,则要关掉weight_decay ...
在实现deepfm是进行特征编码时遇到RuntimeError: Function AddBackward returned an invalid gradient at index expected type torch.FloatTensor but got torch.cuda.FloatTensor问题,但模型和输入都已经to device ,经检查发现nn.ModuleList nn.M ...
2019-11-19 15:22 0 534 推荐指数:
之前用的adam优化器一直是这样的: 没有细想内部参数的问题,但是最近的工作中是要让优化器中的部分参数参与梯度更新,其余部分不更新,由于weight_decay参数的存在,会让model.alphas都有所变化,所以想要真正部分参数 参与更新,则要关掉weight_decay ...
上次通过pytorch实现了RNN模型,简易的完成了使用RNN完成mnist的手写数字识别,但是里面的参数有点不了解,所以对问题进行总结归纳来解决。 总述:第一次看到这个函数时,脑袋有点懵,总结了下总共有五个问题: 1.这个input_size是啥?要输入啥?feature num又是 ...
pytorch固定部分参数 不用梯度 如果是Variable,则可以初始化时指定 但是如果是m = nn.Linear(10,10)是没有requires_grad传入的 另外一个小技巧就是在nn.Module里,可以在中间插入这个 过滤 ...
最近使用Pytorch在学习一个深度学习项目,在模型保存和加载过程中遇到了问题,最终通过在网卡查找资料得已解决,故以此记之,以备忘却。 首先,是在使用多GPU进行模型训练的过程中,在保存模型参数时,应该使用类似如下代码进行保存: torch.save ...
[深度学习] Pytorch(三)—— 多/单GPU、CPU,训练保存、加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU、GPU与CPU的不同环境下训练保存、加载使用使用模型的问题,如果保存、加载的上述三类环境不同,加载时会出错。就去研究了一下,做了实验,得出以下结论: 多/单GPU ...
这篇文章主要介绍了pytorch如何冻结某层参数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧 在迁移学习finetune时我们通常需要冻结前几层的参数不参与训练,在Pytorch中的实现 ...
参考: https://blog.csdn.net/LXX516/article/details/80124768 示例代码: 加载相同名称的模块 直接赋值 ...
此外可以参考PyTorch模型保存。https://zhuanlan.zhihu.com/p/73893187 查看模型每层输出详情 Keras有一个简洁的API来查看模型的每一层输出尺寸,这在调试网络时非常有用。现在在PyTorch中也可以实现这个功能。 使用很简单,如下用法 ...