本文作者Key,博客园主页:https://home.cnblogs.com/u/key1994/ 本内容为个人原创作品,转载请注明出处或联系:zhengzha16@163.com 今天学习了决策树的分类原理,总体来说理解决策树要比理解SVM简单的多,原因有二: (1) 决策树 ...
引言 决策树 Decision Tree 是机器学习中一种经典的分类与回归算法。本文主要讨论用于分类的决策树。决策树模型呈树形结构,在分类问题中,决策树模型可以认为是if then规则的集合,也可以认为是定义在特征空间与类空间上的条件概率分布。其主要优点是模型具有可读性,分类速度快。决策树学习通常包括 个步骤:特征选择 决策树的生成和决策树的剪枝。 基本原理 模型结构 决策树由结点 Node 和有 ...
2019-11-07 17:19 0 556 推荐指数:
本文作者Key,博客园主页:https://home.cnblogs.com/u/key1994/ 本内容为个人原创作品,转载请注明出处或联系:zhengzha16@163.com 今天学习了决策树的分类原理,总体来说理解决策树要比理解SVM简单的多,原因有二: (1) 决策树 ...
算法的理解,可以参考下面的算法伪代码(来源:数据挖掘概念与技术) 决策树算法需要解决关键问题 ...
决策树算法的理解及实现 本文基本复制原文来源:http://www.cnblogs.com/lliuye/p/9008901.html,我个人认为已经非常详细了,所有理论基本来自周志华《机器学习》的决策树章节! 我主要是将该博客提供的源码进行了实践与大量注解 ...
1. 决策树算法 1.1 背景知识 信息量\(I(X)\):指一个样本/事件所蕴含的信息,如果一个事情的概率越大,那么就认为该事件所蕴含的信息越少,确定事件不携带任何信息量 \(I(X)=-log(p(x))\) 信息熵\(H(X)\):用来描述系统信息量 ...
算法思想 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。 其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。 使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出 ...
利用ID3算法来判断某天是否适合打网球。 (1)类别属性信息熵的计算由于未分区前,训练数据集中共有14个实例, 其中有9个实例属于yes类(适合打网球的),5个实例属于no类(不适合打网球), 因此分区前类别属性的熵为: (2)非类别属性信息熵 ...
###决策树基础概念 在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy (熵) 表示的是系统的凌乱程度,它是决策树的决策依据,熵的概念来源于香侬的信息论。 ###决策树的决策过程 选择分裂特征:根据某一指标(信息增益,信息增益比或基尼 ...
Infi-chu: http://www.cnblogs.com/Infi-chu/ 一、简介 决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-else结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法 1.定义: 决策树是一种树形结构,其中每个内部节点表示一个 ...