文本相似度算法 1.信息检索中的重要发明TF-IDF 1.1TF Term frequency即关键词词频,是指一篇文章中关键词出现的频率,比如在一篇M个词的文章中有N个该关键词,则 (公式1.1-1) 为该关键词在这篇文章中的词频。 1.2IDF Inverse document ...
函数使用说明: 函数的三个参数分别是 匹配语句 , 匹配语料 , 相关度 匹配语句,和匹配预料中的语句匹配的语句,必须为字符串 匹配语料,被匹配语句来匹配的语句列表,必须为列表 相关度,函数只会输出匹配预料中匹配度大于相关度的的语句 函数返回类型为列表 算法原理:从文本内容匹配度与文本顺序匹配度两个维度进行衡量。 但就从中文来说,本来写这个主要是因为自己和同学再尝试做一个智能聊天机与数据分析可视 ...
2019-11-07 16:07 2 625 推荐指数:
文本相似度算法 1.信息检索中的重要发明TF-IDF 1.1TF Term frequency即关键词词频,是指一篇文章中关键词出现的频率,比如在一篇M个词的文章中有N个该关键词,则 (公式1.1-1) 为该关键词在这篇文章中的词频。 1.2IDF Inverse document ...
转载请注明出处: http://blog.csdn.net/u013074302/article/details/76422551 导语 在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度、feeds场景下Doc和Doc的语义相似度、机器翻译场景下 ...
0 引言 在自然语言处理任务中,我们经常需要判断两篇文档是否相似、计算两篇文档的相似程度。比如,基于聚类算法发现微博热点话题时,我们需要度量各篇文本的内容相似度,然后让内容足够相似的微博聚成一个簇;在问答系统中,我们会准备一些经典问题和对应的答案,当用户的问题和经典问题很相似时,系统直接返回 ...
在工作中一直使用余弦相似度算法计算两段文本的相似度和两个用户的相似度。一直弄不明白多维的余弦相似度公式是怎么推导来的。今天终于花费时间把公式推导出来,其实很简单,都是高中学过的知识,只是很多年没用了,都还给老师了。本文还通过一个例子演示如果使用余弦相似度计算两段文本的相似度。 余弦函数 ...
Python 文本相似度和聚类 文本数据是非结构化的和高噪声的。在执行文本分类时,拥有标记合理的训练数据和有监督学习大有裨益。但是,文档聚类是一个无监督的学习过程,将尝试通过让机器学习各种各样的文本文档及其特征、相似度以及它们之间的差异,来讲文本 文档分割和分类为单独的类别。这使得文档聚类更具 ...
参考:python文本相似度计算 原始语料格式:一个文件,一篇文章。 原始语料格式如下示例: ...
环境 Anaconda3 Python 3.6, Window 64bit 目的 利用 jieba 进行分词,关键词提取 利用gensim下面的corpora,models,similarities 进行语料库建立,模型tfidf算法,稀疏矩阵相似度分析 ...
设计、多角度去解决问题。 脚本进行相似度分析的基本过程: 1、获取Bug数据。读取excel表, ...