原文:网络权重初始化方法总结(上):梯度消失、梯度爆炸与不良的初始化

目录 前向传播与反向传播回顾 梯度消失与梯度爆炸 激活函数的影响 权重矩阵的影响 不良初始化 参考 博客:blog.shinelee.me 博客园 CSDN 前向传播与反向传播回顾 神经网络的训练过程可以简化成以下步骤, 输入预处理 feature scaling等 初始化网络weight和bias 前向传播,得到网络输出 计算损失函数,得到当前损失 反向传播,根据链式法则,逐层回传得到损失函数 ...

2019-11-07 09:14 3 1370 推荐指数:

查看详情

神经网络权重初始化

权重初始化 模型权重初始化对于网络的训练很重要, 不好的初始化参数会导致梯度传播问题, 降低训练速度; 而好的初始化参数, 能够加速收敛, 并且更可能找到较优解. 如果权重一开始很小,信号到达最后也会很小;如果权重一开始很大,信号到达最后也会很大。不合适的权重初始化会使得隐藏层的输入 ...

Thu Mar 02 06:18:00 CST 2017 1 13501
为何神经网络权重初始化要随机初始化,不能以0为初始化

根据deeplearn.ai吴恩达深度学习课程3.11总结 因为如果W初始化为0 则对于任何Xi,每个隐藏层对应的每个神经元的输出都是相同的,这样即使梯度下降训练,无论训练多少次,这些神经元都是对称的,无论隐藏层内有多少个结点,都相当于在训练同一个函数。 ...

Mon Dec 18 04:45:00 CST 2017 0 4209
【DL-0】神经网络权重初始化方法

目录 为什么要初始化 公式推导 初始化方法 引入激活函数 初始化方法分类 一、为什么要初始化 在深度学习中,神经网络权重初始化方法(weight initialization)对模型的收敛速度和性能有着至关重要的影响 ...

Sun Aug 30 03:33:00 CST 2020 0 1100
Pytorch:权重初始化方法

pytorch在torch.nn.init中提供了常用的初始化方法函数,这里简单介绍,方便查询使用。 介绍分两部分: 1. Xavier,kaiming系列; 2. 其他方法分布 Xavier初始化方法,论文在《Understanding the difficulty ...

Mon Mar 02 21:33:00 CST 2020 0 6495
机器学习基础---神经网络(调试优化)(随机初始化梯度检测)

一:随机初始化 当我们使用梯度下降法或者其他高级优化算法时,我们需要对参数θ选取一些初始值。对于高级优化算法,会默认认为我们已经为变量θ设置了初始值: 同样,对于梯度下降法,我们也需要对θ进行初始化。之后我们可以一步一步通过梯度下降来最小代价函数J,那么如何来对θ进行初始化值 ...

Tue May 12 04:35:00 CST 2020 0 549
1-11 神经网络权重初始化

神经网络权重初始化( Weight Initialization for Deep NetworksVanishing / Exploding gradients) 理想的权重矩阵既不会增长过快,也不会太快下降到 0,从而训练出一个权重梯度不会增长或消失过快的深度网络。 有一个神经元的情况 ...

Tue Sep 11 06:21:00 CST 2018 0 1818
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM