权重初始化 模型权重的初始化对于网络的训练很重要, 不好的初始化参数会导致梯度传播问题, 降低训练速度; 而好的初始化参数, 能够加速收敛, 并且更可能找到较优解. 如果权重一开始很小,信号到达最后也会很小;如果权重一开始很大,信号到达最后也会很大。不合适的权重初始化会使得隐藏层的输入 ...
目录 前向传播与反向传播回顾 梯度消失与梯度爆炸 激活函数的影响 权重矩阵的影响 不良初始化 参考 博客:blog.shinelee.me 博客园 CSDN 前向传播与反向传播回顾 神经网络的训练过程可以简化成以下步骤, 输入预处理 feature scaling等 初始化网络weight和bias 前向传播,得到网络输出 计算损失函数,得到当前损失 反向传播,根据链式法则,逐层回传得到损失函数 ...
2019-11-07 09:14 3 1370 推荐指数:
权重初始化 模型权重的初始化对于网络的训练很重要, 不好的初始化参数会导致梯度传播问题, 降低训练速度; 而好的初始化参数, 能够加速收敛, 并且更可能找到较优解. 如果权重一开始很小,信号到达最后也会很小;如果权重一开始很大,信号到达最后也会很大。不合适的权重初始化会使得隐藏层的输入 ...
根据deeplearn.ai吴恩达深度学习课程3.11总结 因为如果W初始化为0 则对于任何Xi,每个隐藏层对应的每个神经元的输出都是相同的,这样即使梯度下降训练,无论训练多少次,这些神经元都是对称的,无论隐藏层内有多少个结点,都相当于在训练同一个函数。 ...
目录 为什么要初始化 公式推导 初始化方法 引入激活函数 初始化方法分类 一、为什么要初始化 在深度学习中,神经网络的权重初始化方法(weight initialization)对模型的收敛速度和性能有着至关重要的影响 ...
pytorch在torch.nn.init中提供了常用的初始化方法函数,这里简单介绍,方便查询使用。 介绍分两部分: 1. Xavier,kaiming系列; 2. 其他方法分布 Xavier初始化方法,论文在《Understanding the difficulty ...
目录 权重初始化最佳实践 期望与方差的相关性质 全连接层方差分析 tanh下的初始化方法 Lecun 1998 Xavier 2010 ReLU/PReLU下的初始化方法 He 2015 for ReLU ...
要 不正确初始化的权重会导致梯度消失或爆炸问题,从而对训练过程产生负面影响。 对于梯度消失问题,权重 ...
一:随机初始化 当我们使用梯度下降法或者其他高级优化算法时,我们需要对参数θ选取一些初始值。对于高级优化算法,会默认认为我们已经为变量θ设置了初始值: 同样,对于梯度下降法,我们也需要对θ进行初始化。之后我们可以一步一步通过梯度下降来最小化代价函数J,那么如何来对θ进行初始化值 ...
神经网络的权重初始化( Weight Initialization for Deep NetworksVanishing / Exploding gradients) 理想的权重矩阵既不会增长过快,也不会太快下降到 0,从而训练出一个权重或梯度不会增长或消失过快的深度网络。 有一个神经元的情况 ...