最近在学习使用阿里云的推荐引擎时,在使用的过程中用到很多推荐算法,所以就研究了一下,这里主要介绍一种推荐算法—基于物品的协同过滤算法。ItemCF算法不是根据物品内容的属性计算物品之间的相似度,而是通过分析用户的行为记录来计算用户的相似度。该算法认为物品A和物品B相似的依据是因为喜欢物品A的用户 ...
UserCF原理:UserCF给用户推荐那些和他具有共同兴趣爱好的用户喜欢的物品 ItemCF原理:ItemCF给用户推荐那些和他之前喜欢的物品类似的物品 UserCF的推荐更社会化,反映了用户所在的小型兴趣群体中物品的热门程度 而ItemCF的推荐更加个性化,反映了用户自己的兴趣传承 UserCF适合于新闻推荐的原因: 热门程度和时效性是个性化新闻推荐的重点,而个性化相对于这两点略显次要 Use ...
2019-11-06 22:45 0 569 推荐指数:
最近在学习使用阿里云的推荐引擎时,在使用的过程中用到很多推荐算法,所以就研究了一下,这里主要介绍一种推荐算法—基于物品的协同过滤算法。ItemCF算法不是根据物品内容的属性计算物品之间的相似度,而是通过分析用户的行为记录来计算用户的相似度。该算法认为物品A和物品B相似的依据是因为喜欢物品A的用户 ...
ItemCF_基于物品的协同过滤 1. 概念 2. 原理 如何给用户推荐? 给用户推荐他没有买过的物品--103 3. java ...
基于物品的协同过滤ItemCF 数据集字段: 1. User_id: 用户ID 2. Item_id: 物品ID 3. preference:用户对该物品的评分 算法的思想: 1. 建立物品的同现矩阵A,即统计两两物品同时出现的次数 数据格式:Item_id1 ...
基于物品的协同过滤算法(ItemCF)的基本思想是:给用户推荐那些和他们之前喜欢的物品相似的物品。 比如,该算法会因为你购买过《Java从入门到精通》而给你推荐《Java并发编程实战》。不过,基于物品的协同过滤算法并不利用物品的内容属性计算物品之间的相似度,二是通过分析用户的行为数据计算物品 ...
ItemCF_基于物品的协同过滤 1. 概念 2. 原理 如何给用户推荐? 给用户推荐他没有买过的物品--103 ...
...
转载请注明出处: http://www.cnblogs.com/gufeiyang 一个人想看电影的时候常常会思考要看什么电影呢。这个时候他可能会问周围爱好的人求推荐。现在社 ...
协同过滤算法原理 一、协同过滤算法的原理及实现 二、基于物品的协同过滤算法详解 一、协同过滤算法的原理及实现 协同过滤推荐算法是诞生最早,并且较为著名的推荐算法。主要的功能是预测和推荐。算法通过对用户历史行为数据的挖掘发现用户的偏好,基于不同的偏好对用户 ...