牛顿法法主要是为了解决非线性优化问题,其收敛速度比梯度下降速度更快。其需要解决的问题可以描述为:对于目标函数f(x),在无约束条件的情况下求它的最小值。 其中x=(x1,x2,..,xn)是n维空间的向量。我们在下面需要用到的泰勒公式先在这写出来。 牛顿法的主要思想是:在现有的极小值 ...
顿法是梯度下降法的进一步发展,梯度下降法利 用目标函数的一阶偏导数信息 以负梯度方向作为搜索方向,只考虑目标函数在迭代点的局部性质 而牛顿法 仅使用目标函数的一阶偏导数,还进一步利 目标函数的二阶偏导数,这样就考虑 梯度变化的趋势,因 而能 全面地确定合适的搜索 方向加快收敛,它具二阶收敛速度。 但牛顿法主要存在以下两个缺点: . 对目标函数有较严格的要求。函数必须具有连续的一 二阶偏导数,海 ...
2019-11-06 19:54 0 1147 推荐指数:
牛顿法法主要是为了解决非线性优化问题,其收敛速度比梯度下降速度更快。其需要解决的问题可以描述为:对于目标函数f(x),在无约束条件的情况下求它的最小值。 其中x=(x1,x2,..,xn)是n维空间的向量。我们在下面需要用到的泰勒公式先在这写出来。 牛顿法的主要思想是:在现有的极小值 ...
牛顿法和拟牛顿法 牛顿法(Newton method)和拟牛顿法(quasi Newton method)是求解无约束最优化问题的常用方法,收敛速度快。牛顿法是迭代算法,每一步需要求解海赛矩阵的逆矩阵,计算比较复杂。拟牛顿法通过正定矩阵近似海赛矩阵的逆矩阵或海赛矩阵,简化了这一 ...
牛顿法,大致的思想是用泰勒公式的前几项来代替原来的函数,然后对函数进行求解和优化。牛顿法和应用于最优化的牛顿法稍微有些差别。 牛顿法 牛顿法用来迭代的求解一个方程的解,原理如下: 对于一个函数f(x),它的泰勒级数展开式是这样的 \[f(x) = f(x_0) + f'(x_0 ...
牛顿法(英语:Newton's method)又称为牛顿-拉弗森方法(英语:Newton-Raphson method),它是一种在实数域和复数域上近似求解方程的方法。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x)=0的根。 一般情况对于f(x)是一元二次的情况直接应用求根公式就可以 ...
1. 迭代公式建立 将在点的Taylor展开如下: 一阶泰勒多项式: 近似于 解出x记为,则 2. 牛顿迭代法的几何解析 在处做曲线的切线,切线方程为: 令得切线与x轴的交点坐标为,这就是牛顿迭代法的迭代公式。因此,牛顿法又称“切线法”。 Newton迭代法的特点是 ...
Hessian矩阵与牛顿法 牛顿法 主要有两方面的应用: 1. 求方程的根; 2. 求解最优化方法; 一. 为什么要用牛顿法求方程的根? 问题很多,牛顿法 是什么?目前还没有讲清楚,没关系,先直观理解为 牛顿法是一种迭代求解方法 ...
牛顿算法 对于优化函数\(f(x)\),\(x=(x_1;x_2;...;x_n)\),二阶连续可导 在\(x_k\)处泰勒展开,取前三项,即对于优化函数二阶拟合 \[f(x)=f(x_k)+g_k(x-x_k)+\frac{1}{2}(x-x_k)G_k(x-x_k ...
浅析线性表(链表)的头插法和尾插法的区别及优缺点 线性表作为数据结构中比较重要的一种,具有操作效率高、内存利用率高、结构简单、使用方便等特点,今天我们一起交流一下单向线性表的头插法和尾插法的区别及优缺点 线性表因为每个元素都包含一个指向下一元素的指针,所以新增、删除、修改起来非常简单迅速 ...