这里的频率学派,认为参数θ是一个常量 ,只有属于置信区间,或者∉置信区间,没有属于这个某个置信区间的概率是0.9的说法。 第一个意思是 整体分布的一个参数θ,取θ的某一个先验分布,计算在该先验分布的条件下的贝叶斯估计的值不能等于该θ在整体分布下面的值 ...
事实上,概率模型的训练过程就是参数估计 parameter estimation 的过程。对于参数的估计,统计学界的两个学派提供了不同的解决方案:频率主义学派 Frequentist 认为参数虽然未知,但却是客观存在的固定值,因此,可通过优化似然函数等准则来确定参数值 贝叶斯学派 Bayesian 则认为参数是未观察到的随机变量,其本身也可有分布,因此,可假设参数服从一个先验分布,然后基于观测到的 ...
2019-11-06 11:24 0 313 推荐指数:
这里的频率学派,认为参数θ是一个常量 ,只有属于置信区间,或者∉置信区间,没有属于这个某个置信区间的概率是0.9的说法。 第一个意思是 整体分布的一个参数θ,取θ的某一个先验分布,计算在该先验分布的条件下的贝叶斯估计的值不能等于该θ在整体分布下面的值 ...
一、 “探测仪,如果我问一个贝叶斯学派的统计学家如果……”“[掷]我是一个中微子探测仪,不是迷宫守卫。老实说,你是不是脑子坏掉了。”“[掷]...yes” 迷宫守卫的梗:说迷宫里有2条路,分别通向目的地和陷阱,路口各有一个守卫,一个只说真话一个只说假话,他们都知道路后面是什么以及彼此说话 ...
对于技术应用人员来说,我们更看重方法的应用,但有时候对知识的背景做一些了解,我觉得还是挺有必要的,能帮助我们理解一些东西。这篇博文里,不会呈现任何计算公式,只是讨论一下贝叶斯学派与频率学派之间的问题。 贝叶斯学派与频率学派是当今数理统计学的两大学派,基于各自的理论 ...
频率学派(古典学派)和贝叶斯学派是数理统计领域的两大流派。 这两大流派对世界的认知有本质的不同:频率学派认为世界是确定的,有一个本体,这个本体的真值是不变的,我们的目标就是要找到这个真值或真值所在的范围;而贝叶斯学派认为世界是不确定的,人们对世界先有一个预判,而后通过观测数据对这个预判做调整 ...
使用随机事件的发生的频率描写叙述概率的方法,就是通常说的古典概型。或者称为频率学派。另外有一个更加综合的观点就是贝叶斯学派。在贝叶斯学派的观点下概率表示的是事件的不确定性大小。 使用概率表示不确定性,尽管不是唯一的选择。可是是必定的,由于假设想使用 ...
频率派 \(vs\) 贝叶斯派 一、前言 在使用各种概率模型时,比如极大似然估计 \(logP(X|\theta)\),已经习惯这么写了,可是为什么这么写?为什么X在前,为什么 \(\theta\) 在后,分别代表了什么?这些更深一层的逻辑和理由不是特别清晰,故此梳理一下频率 ...
目录 一、贝叶斯 什么是先验概率、似然概率、后验概率 公式推导 二、为什么需要朴素贝叶斯 三、朴素贝叶斯是什么 条件独立 举例:长肌肉 拉普拉斯平滑 半朴素贝叶斯 一、贝叶斯 ...
一、贝叶斯网络与朴素贝叶斯的区别 朴素贝叶斯的假设前提有两个第一个为:各特征彼此独立;第二个为且对被解释变量的影响一致,不能进行变量筛选。但是很多情况这一假设是无法做到的,比如解决文本分类时,相邻词的关系、近义词的关系等等。彼此不独立的特征之间的关系没法通过朴素贝叶斯分类器 ...