github:代码实现之逻辑回归 本文算法均使用python3实现 1. 什么是逻辑回归 《机器学习实战》一书中提到: 利用逻辑回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类(主要用于解决二分类问题)。 由以上描述我们大概可以想到 ...
程序所用文件:https: files.cnblogs.com files henuliulei E B E E BD E E B BB E B E D AE.zip 概念 代价函数关于参数的偏导 梯度下降法最终的推导公式如下 多分类问题可以转为 分类问题 正则化处理可以防止过拟合,下面是正则化后的代价函数和求导后的式子 正确率和召回率F 指标 我们希望自己预测的结果希望更准确那么查准率就更高,如 ...
2019-11-02 18:11 0 405 推荐指数:
github:代码实现之逻辑回归 本文算法均使用python3实现 1. 什么是逻辑回归 《机器学习实战》一书中提到: 利用逻辑回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类(主要用于解决二分类问题)。 由以上描述我们大概可以想到 ...
程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8D%AE.zip 线性回归 ...
Logistic Regression Classifier逻辑回归主要思想就是用最大似然概率方法构建出方程,为最大化方程,利用牛顿梯度上升求解方程参数。 优点:计算代价不高,易于理解和实现。 缺点:容易欠拟合,分类精度可能不高。 使用数据类型:数值型和标称型数据。 介绍逻辑 ...
一、逻辑回归的认识 逻辑回归是一个用来解决二分类的简便方法。先来看看逻辑回归解决二分类的基本思想。 之前写了线性回归,现在写逻辑回归~都叫回归,有什么不同呢? 首先,从机器学习的角度说一下。机器学习中,有两个问题是比较相似的,即预测和分类。通常将模型的输出是有限的离散值的问题称为分类问题 ...
一、逻辑回归原理 前面我们讲的线性回归模型是求输出特征向量Y和输入样本矩阵X之间的线性关系系数θ">θ,从而拟合模型Y = Xθ。此时的Y是连续的,所以是回归模型。那么,考虑如果Y是离散的话,要怎么进行处理?此时可以通过映射函数G(Y)将Y映射为连续的值,并且规定在一定 ...
JSong @2016.06.13 本系列文章不适合入门,是作者综合各方资源和个人理解而得. 另外最好有数学基础, 因为数学人一言不合就会上公式. 简单模型的魅力在于它能从各个角度去欣赏. 逻辑回归是最简单的二分类模型之一,实际应用中二分类最常见,如判定是否是垃圾邮件,是否是人脸 ...
本文参考了很多网页,主要有: http://blog.csdn.net/zouxy09/article/details/20319673 http://www.wbrecom.com/?p=394 ...
逻辑回归是统计学习方法中的经典分类方法,也是在深度学习兴起之前,工业界最为常用的分类算法之一。 什么是逻辑回归 逻辑回归在某些书中也被称为对数几率回归(比如西瓜书),是一种广义的线性模型:利用一个单调可微的函数将分类任务的真实标记 $ y $ 与线性回归模型的预测值联系起来。 考虑一个二分 ...