前面用一个简单的4层卷积网络,以猫狗共25000张图片作为训练数据,经过100 epochs的训练,最终得到的准确度为90%。 深度学习中有一种重要的学习方法是迁移学习,可以在现有训练好的模型基础上针对具体的问题进行学习训练,简化学习过程。 这里以imagenet的resnet50模型进行迁移 ...
训练数据量的大小对深度学习结果有重要影响,前面 https: www.cnblogs.com zhengbiqing p .html 只随机抽取猫狗图片各 分别作为训练 验证 测试集,即使采用了数据增强,精度只达到 。 采用kaggle 猫狗数据集全部 张进行训练学习,随机选取猫狗图片各 分别作为训练 验证 测试集,进行训练。 训练 次迭代: 用测试集对模型进行测试: ...
2019-10-30 23:21 0 644 推荐指数:
前面用一个简单的4层卷积网络,以猫狗共25000张图片作为训练数据,经过100 epochs的训练,最终得到的准确度为90%。 深度学习中有一种重要的学习方法是迁移学习,可以在现有训练好的模型基础上针对具体的问题进行学习训练,简化学习过程。 这里以imagenet的resnet50模型进行迁移 ...
在https://www.cnblogs.com/zhengbiqing/p/11780161.html中直接在resnet网络的卷积层后添加一层分类层,得到一个最简单的迁移学习模型,得到的结果为95 ...
在上一篇的基础上,对数据调用keras图片预处理函数preprocess_input做归一化预处理,进行训练。 导入preprocess_input: 数据生成添加preprocessing_function=preprocess_input 训练25epoch ...
keras提供了多种ImageNet预训练模型,前面的文章都采用resnet50,这里改用Xception预训练模型进行迁移学习。 定义模型: 准备训练数据: 训练模型: 训练32轮后提前结束: 测试 ...
先划分数据集程序训练集中猫狗各12500张现在提取1000张做为训练集,500张作为测试集,500张作为验证集: ...
版权声明:本文为博主原创文章,欢迎转载,并请注明出处。联系方式:460356155@qq.com 对数据量较少的深度学习,为了避免过拟合,可以对训练数据进行增强及添加Dropout层。 对训练数据进行变换增强: 训练模型添加Dropout层: 训练 ...
数据集下载地址: 链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw提取码:2xq4 猫狗数据集的分为训练集25000张,在训练集中猫和狗的图像是混在一起的,pytorch读取数据集有两种方式,第一种方式是将不同类别的图片放于其对应的类文件夹中 ...
新手入门PaddlePaddle的一个简单Demo——猫狗大战 主要目的在于整体了解PP用卷积做图像分类的流程,以及最最重要的掌握自定义数据集的读取方式 猫狗数据集是从网络上下载到工作目录的。 本项目源地址。 生成图像列表 定义读取数据 PaddlePaddle读取训练 ...