一、概述 线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在机器学习中属于监督学习。在数据分析等领域应用十分广泛。 很多情况下我们都用它进行预测,比如预测房屋价格。在这里用一个简单的例子来说明,假设有一组房屋数据,为了理解方便,假设 ...
程序所用文件:https: files.cnblogs.com files henuliulei E B E E BD E E B BB E B E D AE.zip 线性回归 决定系数越接近一那么预测效果越好 对于多元线性回归和一元线性回归推导理论是一致的,只不过参数是多个参数而已 梯度下降 梯度下降法存在局部最小值 太小迭代次数多,太大将无法迭代到最优质 梯度下降发容易到达局部最小值 凸函数使 ...
2019-10-29 22:34 1 386 推荐指数:
一、概述 线性回归是利用数理统计中的回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在机器学习中属于监督学习。在数据分析等领域应用十分广泛。 很多情况下我们都用它进行预测,比如预测房屋价格。在这里用一个简单的例子来说明,假设有一组房屋数据,为了理解方便,假设 ...
线性回归与梯度下降算法 作者:上品物语 转载自:线性回归与梯度下降算法讲解 知识点: 线性回归概念 梯度下降算法 l 批量梯度下降算法 l 随机梯度下降算法 l 算法收敛判断方法 1.1 线性回归 在统计学中 ...
通过学习斯坦福公开课的线性规划和梯度下降,参考他人代码自己做了测试,写了个类以后有时间再去扩展,代码注释以后再加,作业好多: 图1. 迭代过程中的误差cost ...
看了coursea的机器学习课,知道了梯度下降法。一开始只是对其做了下简单的了解。随着内容的深入,发现梯度下降法在很多算法中都用的到,除了之前看到的用来处理线性模型,还有BP神经网络等。于是就有了这篇文章。 本文主要讲了梯度下降法的两种迭代思路,随机梯度下降(Stochastic ...
损失函数 总损失定义为: yi为第i个训练样本的真实值 h(xi)为第i个训练样本特征值组合预测函数 又称最小二乘法 正规方程 理解:X为特征值矩阵 ...
\(\alpha\)的取值问题。还有在拟合线性模型时,如何选择正确的算法,梯度下降 or 最小二乘法? m ...
一、机器学习概述: 1. 学习动机: 机器学习已经在不知不觉中渗透到人们生产和生活中的各个领域,如邮箱自动过滤的垃圾邮件、搜索引擎对链接的智能排序、产品广告的个性化推荐等; 机器学习 ...
线性回归形如y=w*x+b的形式,变量为连续型(离散为分类)。一般求解这样的式子可采用最小二乘法原理,即方差最小化, loss=min(y_pred-y_true)^2。若为一元回归,就可以求w与b的偏导,并令其为0,可求得w与b值;若为多元线性回归, 将用到梯度下降法求解,这里的梯度值w的偏 ...