1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练样本涵盖,速度也会较快。但当数据量急剧增大,达到百万甚至更大的数量级时,组成的矩阵将极其庞大 ...
一 序言 动量梯度下降也是一种神经网络的优化方法,我们知道在梯度下降的过程中,虽然损失的整体趋势是越来越接近 ,但过程往往是非常曲折的,如下图所示: 特别是在使用mini batch后,由于单次参与训练的图片少了,这种 曲折 被放大了好几倍。前面我们介绍过L 和dropout,它们要解决的也是 曲折 的问题,不过这种曲折指的是求得的W和b过于拟合训练数据,导致求解曲线很曲折。动量梯度下降所解决的曲 ...
2019-10-29 11:01 0 298 推荐指数:
1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练样本涵盖,速度也会较快。但当数据量急剧增大,达到百万甚至更大的数量级时,组成的矩阵将极其庞大 ...
https://blog.csdn.net/weixin_38206214/article/details/81143894 在深度学习的路上,从头开始了解一下各项技术。本人是DL小白,连续记录我自 ...
https://blog.csdn.net/u012328159/article/details/80081962 https://mp.weixin.qq.com/s?__biz=MzUxMDg4 ...
一、前言 回顾一下前面讲过的两种解决过拟合的方法: 1)L0、L1、L2:在向前传播、反向传播后面加个小尾巴 2)dropout:训练时随机“删除”一部分神经元 本篇要介绍的优化方法叫mini-batch,它主要解决的问题是:实际应用时的训练数据往往都太大了,一次加载到电脑 ...
最近回顾神经网络的知识,简单做一些整理,归档一下神经网络优化算法的知识。关于神经网络的优化,吴恩达的深度学习课程讲解得非常通俗易懂,有需要的可以去学习一下,本人只是对课程知识点做一个总结。吴恩达的深度学习课程放在了网易云课堂上,链接如下(免费): https ...
上使用梯度下降算法。 从而神经网络模型在训练数据的孙师函数尽可能小。 --反向传播算法是训练神经网络的 ...
002-深度学习数学基础(神经网络、梯度下降、损失函数) 这里在进入人工智能的讲解之前,你必须知道几个名词,其实也就是要简单了解一下人工智能的数学基础,不然就真的没办法往下讲了。 本节目录如下: 前言。 监督学习与无监督学习。 神经网络。 损失函数。 梯度下降 ...
在求解神经网络算法的模型参数,梯度下降(Gradient Descent)是最常采用的方法。下面是我个人学习时对梯度下降的理解,如有不对的地方欢迎指出。 1、✌ 梯度定义 微积分我们学过,对多元函数的各个变量求偏导数,把求得的各个参数的偏导数以向量的形式 ...