原文:sklearn里计算roc_auc_score,报错ValueError: bad input shape

用sklearn的DecisionTreeClassifer训练模型,然后用roc auc score计算模型的auc。代码如下 报错信息如下 目测是你的y pred出了问题,你的y pred是 , 的array,也就是有两列。 因为predict proba返回的是两列。predict proba的用法参考这里。 简而言之,你上面的代码改成这样就可以了。 原文:http: sofasofa.io ...

2019-10-28 08:49 0 883 推荐指数:

查看详情

sklearn学习:为什么roc_auc_score()和auc()有不同的结果?

为什么roc_auc_score()和auc()有不同的结果? auc():计算ROC曲线下的面积.即图中的area roc_auc_score():计算AUC的值,即输出的AUC 最佳答案 AUC并不总是ROC曲线下的面积.曲线下面积是某个曲线下的(抽象)区域 ...

Wed Apr 29 19:58:00 CST 2020 1 14245
roc_auc_score

roc_auc_score(Receiver Operating Characteristics(受试者工作特性曲线,也就是说在不同的阈值下,True Positive Rate和False Positive Rate的变化情况)) 我们只考虑判为正的情况时,分类器在正例和负例两个集合中分别预测 ...

Thu May 21 23:03:00 CST 2020 0 6760
标记编码报错ValueError: bad input shape ()

《Python机器学习经典实例》2.9小节中,想自己动手实践汽车特征评估质量,所以需要对数据进行预处理,其中代码有把字符串标记编码为对应的数字,如下代码 报错: 所以由此看出,是label_encoder[i].transform(input_data[i])中 ...

Tue Jan 09 05:04:00 CST 2018 0 2907
SKlearn - ROC and AUC

ROCAUC 的理论知识 请参考我的博客 分类模型评估 本文旨在 总结 其在 SKlearn 中的用法 基础用法 先看源码 然后看一个最普通的示例,包括 ROC计算AUC计算ROC 曲线绘制 输出 EER 选择模型阈值 ...

Mon Apr 13 22:47:00 CST 2020 0 875
ROCAUC介绍以及如何计算AUC

ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里。这篇博文简单介绍ROCAUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUCROC曲线 ...

Sat Jan 27 00:10:00 CST 2018 0 7133
sklearn下的ROCAUC原理详解

ROC全称Receiver operating characteristic。 定义 TPR:true positive rate,正样本中分类正确的比率,即TP/(TP+FN),一般希望它越大越好 FPR:false negtive rage,负样本中分类错误的比率,即FP/(FP+TN ...

Sun Jan 05 00:49:00 CST 2020 0 1426
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM