背景 都说随机是AB实验的核心,为什么随机这么重要呢?有人说因为随机所以AB组整体不存在差异,这样才能准确估计实验效果(ATE) \[ATE = E(Y_t(1) - Y_c(0)) \] 那究竟随机是如何定义的呢? 根据Rubin Causal Model, 想要让上述估计无偏 ...
背景 AB实验可谓是互联网公司进行产品迭代增加用户粘性的大杀器。但人们对AB实验的应用往往只停留在开实验算P值,然后let it go。。。let it go 。。。 让我们把AB实验的结果简单的拆解成两个方面: P 实验结果显著 P 统计检验显著 实验有效 P 实验有效 如果你的产品改进方案本来就没啥效果当然怎么开实验都没用,但如果方案有效,请不要让 statictical Hack 浪费一个优 ...
2019-10-27 21:49 0 1180 推荐指数:
背景 都说随机是AB实验的核心,为什么随机这么重要呢?有人说因为随机所以AB组整体不存在差异,这样才能准确估计实验效果(ATE) \[ATE = E(Y_t(1) - Y_c(0)) \] 那究竟随机是如何定义的呢? 根据Rubin Causal Model, 想要让上述估计无偏 ...
CACE全称Compiler Average Casual Effect或者Local Average Treatment Effect。在观测数据中的应用需要和Instrument Variable结合来看,这里我们只讨论CACE的框架给随机AB实验提供的一些learning。你碰到过以下低实验 ...
一直以来机器学习希望解决的一个问题就是'what if',也就是决策指导: 如果我给用户发优惠券用户会留下来么? 如果患者服了这个药血压会降低么? 如果APP增加这个功能会增加用户的使 ...
这篇文章会讨论: 在什么情况下需要做 AB 实验 从产品/交互角度,如何设计一个实验 前端工程师如何打点 如何统计数据,并保证数据准确可信 如何分析实验数据,有哪些数据需要重点关注 附:如何搭建前端实验项目,以 mip-experiment 为例 ...
这篇论文是在 Recursive Partitioning for Heterogeneous Causal Effects 的基础上加入了两个新元素: Trigger:对不同群体的treat ...
在线AB实验成为当今互联网公司中必不可少的数据驱动的工具,很多公司把自己的应用来做一次AB实验作为数据驱动的试金石。 文 | 松宝 来自 字节跳动数据平台团队增长平台 在线AB实验成为当今互联网公司中必不可少的数据驱动的工具,很多公司把自己的应用来做一次AB实验作为数据驱动的试金石 ...
Meta Learner和之前介绍的Causal Tree直接估计模型不同,属于间接估计模型的一种。它并不直接对treatment effect进行建模,而是通过对response effect(ta ...
这篇是treatment effect估计相关的论文系列第一篇所以会啰嗦一点多给出点背景。 论文 Athey, S., and Imbens, G. 2016. Recursive partitioning for heterogeneous causal effects. ...