极大似然估计和朴素贝叶斯都是运用概率的思想对参数进行估计去解决问题的,二者具有一定的相似性,在初学时经常会搞不清二者的,在这里首先对二者的分类原理进行介绍,然后比较一下二者的异同点。 1.极大似然估计(maximum likelihood estimation) 贝叶斯公式 事件 ...
最大似然估计 最大后验估计与朴素贝叶斯分类算法 目录 一 前言 二 概率论基础 三 最大似然估计 四 最大后验估计 五 朴素贝叶斯分类 六 参考文献 一 前言 本篇文章的主要内容为笔者对概率论基础内容的回顾,及个人对其中一些知识点的解读。另外,在这些上述知识的基础之上,回顾了概率推断的基础内容最大似然估计与最大后验估计。最后,文章的结尾回顾了朴素贝叶斯分类方法的基本流程,并且用一个小案例来帮助读者 ...
2019-10-30 15:43 0 500 推荐指数:
极大似然估计和朴素贝叶斯都是运用概率的思想对参数进行估计去解决问题的,二者具有一定的相似性,在初学时经常会搞不清二者的,在这里首先对二者的分类原理进行介绍,然后比较一下二者的异同点。 1.极大似然估计(maximum likelihood estimation) 贝叶斯公式 事件 ...
问题:这些估计都是干嘛用的?它们存在的意义的是什么? 有一个受损的骰子,看起来它和正常的骰子一样,但实际上因为受损导致各个结果出现的概率不再是均匀的 \(\frac{1}{6}\) 了。我们想知道这个受损的骰子各个结果出现的实际概率。准确的实际概率我们可能永远无法精确的表示出 ...
贝叶斯估计、最大似然估计(MLE)、最大后验概率估计(MAP)这几个概念在机器学习和深度学习中经常碰到,读文章的时候还感觉挺明白,但独立思考时经常会傻傻分不清楚(😭),因此希望通过本文对其进行总结。 2. 背景知识 注:由于概率 ...
1、贝叶斯公式 这三种方法都和贝叶斯公式有关,所以我们先来了解下贝叶斯公式: 每一项的表示如下: posterior:通过样本X得到参数的概率,也就是后验概率。 likehood:通过参数得到样本X的概率,似然函数,通常就是我们的数据集的表现 ...
ML-最大似然估计 MAP-最大后验估计 贝叶斯估计 三者的关系及区别 (本篇博客来自李文哲老师的微课,转载请标明出处http://www.cnblogs.com/little-YTMM/p/5399532.html ) 一。机器学习 核心思想是从past ...
,例如极大似然估计、最大后验估计、贝叶斯推断、最大熵估计,等等。虽然方法各不相同,但实际上背后的道理大体一样。 ...
最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum aposteriori estimation, 简称MAP)是很常用的两种参数估计方法。 1、最大似然估计(MLE) 在已知试验结果(即是样本)的情况下 ...
1, 频率派思想 频率派思想认为概率乃事情发生的频率,概率是一固定常量,是固定不变的 2, 最大似然估计 假设有100个水果由苹果和梨混在一起,具体分配比例未知,于是你去随机抽取10次,抽到苹果标记为1, 抽到梨标记为0,每次标记之后将抽到的水果放回 最终统计的结果如下: 苹果 8次,梨 ...