Abstract 许多图像到图像的翻译问题是有歧义的,因为一个输入图像可能对应多个可能的输出。在这项工作中,我们的目标是在一个条件生成模型设置中建立可能的输出分布。将模糊度提取到一个低维潜在向量中,在测试时随机采样。生成器学习将给 ...
摘要:无监督图像转换是计算机视觉领域中一个重要而又具有挑战性的问题。给定源域中的一幅图像,目标是学习目标域中对应图像的条件分布,而不需要看到任何对应图像对的例子。虽然这种条件分布本质上是多模态的,但现有的方法做了过度简化的假设,将其建模为确定性的一对一映射。因此,它们无法从给定的源域映像生成不同的输出。为了解决这一局限性,我们提出了一个多模态无监督图像到图像的转换 MUNIT 框架。我们假设可以将 ...
2019-11-28 18:39 0 524 推荐指数:
Abstract 许多图像到图像的翻译问题是有歧义的,因为一个输入图像可能对应多个可能的输出。在这项工作中,我们的目标是在一个条件生成模型设置中建立可能的输出分布。将模糊度提取到一个低维潜在向量中,在测试时随机采样。生成器学习将给 ...
Abstract: 无监督图像到图像的翻译目的是学习不同域图像的一个联合分布,通过使用来自单独域图像的边缘分布。给定一个边缘分布,可以得到很多种联合分布。如果不加入额外的假设条件的话,从边缘分布无法推出联合分布。为了解决这个问题,作者提出了一个shared-latent空间假设 ...
Abstract 最近在两个领域上的图像翻译研究取得了显著的成果。但是在处理多于两个领域的问题上,现存的方法在尺度和鲁棒性上还 ...
一篇用内存思想来完成Instance-level i2i translation工作的文章。全名是memory-guided unsupervised I2I translation (MGUIT)。 至于这个memory network是什么,后文再说。 Related works就不多介绍 ...
这是NeurIPS 2018一篇图像翻译的文章。目前的无监督图像到图像的翻译技术很难在不改变背景或场景中多个对象交互方式的情况下将注意力集中在改变的对象上去。这篇文章的解决思路是使用注意力导向来进行图 ...
出处 CVPR2017 Motivation 尝试用条件GAN网络来做image translation,让网络自己学习图片到图片的映射函数,而不需要人工定制特征。 Introduction 作者从不同种类的语言翻译类比,提出了Image translation的概念,并希望在给定足够 ...
摘要 GAN的训练需要图片是两两匹配的,这样经过训练后,生成器可以逐步生成一张让判别期无法判断真伪的图片。但实际上会碰到一些非匹配的图片,于是就提出了非匹配的图片转换(Unpaired image-to-image),一种在没有成对例子的情况下学习将图像从源域X转换到目标域Y的方法 ...
---恢复内容开始--- Motivation 使用单组的生成器G和判别训练图片在多个不同的图片域中进行转换 效果确实很逆天,难怪连Good Fellow都亲手给本文点赞 Introduction 论述了Image translating的概念,GAN极大地提升了该领域的生成质量 ...