一般来说,监督学习的目标函数由损失函数和正则化项组成。(Objective = Loss + Regularization) 对于keras模型,目标函数中的正则化项一般在各层中指定,例如使用Dense的 kernel_regularizer 和 bias_regularizer等参数指定权重 ...
.caret, .dropup .btn .caret border top color: important .label border: px solid .table border collapse: collapse important .table td, .table th background color: fff important .table bordered th, .ta ...
2019-10-23 16:48 0 1971 推荐指数:
一般来说,监督学习的目标函数由损失函数和正则化项组成。(Objective = Loss + Regularization) 对于keras模型,目标函数中的正则化项一般在各层中指定,例如使用Dense的 kernel_regularizer 和 bias_regularizer等参数指定权重 ...
平方损失函数求导后,偏导太小,迭代更新慢,所以考虑用交叉熵损失函数(注意标记值和预测值不能写反了)(标记值为0或1,对0取对数是不存在的额): 交叉熵损失函数满足作为损失函数的两大规则:非负性,单调一致性 ...
前文分别讲了tensorflow2.0中自定义Layer和自定义Model,本文将来讨论如何自定义损失函数。 (一)tensorflow2.0 - 自定义layer (二)tensorflow2.0 - 自定义Model (三)tensorflow2.0 - 自定义loss ...
一,常用的内置评估指标 MeanSquaredError(平方差误差,用于回归,可以简写为MSE,函数形式为mse) MeanAbsoluteError (绝对值误差,用于回归,可以简写为MAE,函数形式为mae) MeanAbsolutePercentageError ...
下面的范例使用TensorFlow的中阶API实现线性回归模型。 TensorFlow的中阶API主要包括各种模型层,损失函数,优化器,数据管道,特征列等等。 结果: 这里出现了一个问题,我是在谷歌colab上使用gpu进行运行的,会报这个错误,但当我切换成cpu ...
有三种计算图的构建方式:静态计算图,动态计算图,以及Autograph. 在TensorFlow1.0时代,采用的是静态计算图,需要先使用TensorFlow的各种算子创建计算图,然后再开启一个会话Session,显式执行计算图。 而在TensorFlow2.0时代,采用的是动态计算图 ...
1.utils.py import numpy as np import pickle as pkl import networkx as nx impo ...