Maximal Information Coefficient (MIC)最大互信息系数详解与实现 ———————————————— 版权声明:本文为CSDN博主「Font Tian」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https ...
对于最大信息系数的介绍:https: blog.csdn.net u article details python实现最大信息系数: ...
2019-10-21 16:56 0 934 推荐指数:
Maximal Information Coefficient (MIC)最大互信息系数详解与实现 ———————————————— 版权声明:本文为CSDN博主「Font Tian」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https ...
python实现六大分群质量评估指标(兰德系数、互信息、轮廓系数) 1 R语言中的分群质量——轮廓系数 因为先前惯用R语言,那么来看看R语言中的分群质量评估,节选自笔记︱多种常见聚类模型以及分群质量评估(聚类注意事项、使用技巧): 没有固定标准,一般会3-10分群。或者用一些指标评价,然后交叉 ...
互信息指的是两个随机变量之间的关联程度,即给定一个随机变量后,另一个随机变量不确定性的削弱程度,因而互信息取值最小为0,意味着给定一个随机变量对确定一另一个随机变量没有关系,最大取值为随机变量的熵,意味着给定一个随机变量,能完全消除另一个随机变量的不确定性 ...
实验室最近用到nmi( Normalized Mutual information )评价聚类效果,在网上找了一下这个算法的实现,发现满意的不多. 浙江大学蔡登教授有一个,http://www.zjucadcg.cn/dengcai/Data/code/MutualInfo.m ,他在数据挖掘届 ...
两个随机变量的独立性表示两个变量X与Y是否有关系(贝叶斯可证),但是关系的强弱(mutual dependence)是无法表示的,为此我们引入了互信息。 其中 p(x,y) 是 X 和 Y 的联合概率分布函数,而p(x)和p(y)分别是 X 和 Y 的边缘概率分布函数。 在连续 ...
---恢复内容开始--- 1、先更新pip命令(root权限下) 2、输入以下代码 ---恢复内容结束--- ...
逐点互信息(PIM):用来衡量两个事物的相关性 定义如下: 在概率论中,我们知道,如果x跟y不相关,则 P(x,y) = P(x)P(y)。二者相关性越大,则 P(x,y) 就相比于 P(x)P(y) 越大。根据条件概率公式,你还可以写成 这也很好理解,在y出现的情况下 ...