激活函数在深度学习中扮演着非常重要的角色,它给网络赋予了非线性,从而使得神经网络能够拟合任意复杂的函数。 如果没有激活函数,无论多复杂的网络,都等价于单一的线性变换,无法对非线性函数进行拟合。 目前,深度学习中最流行的激活函数为 relu, 但也有些新推出的激活函数,例如 swish、GELU ...
.caret, .dropup .btn .caret border top color: important .label border: px solid .table border collapse: collapse important .table td, .table th background color: fff important .table bordered th, .ta ...
2019-10-21 08:03 0 1360 推荐指数:
激活函数在深度学习中扮演着非常重要的角色,它给网络赋予了非线性,从而使得神经网络能够拟合任意复杂的函数。 如果没有激活函数,无论多复杂的网络,都等价于单一的线性变换,无法对非线性函数进行拟合。 目前,深度学习中最流行的激活函数为 relu, 但也有些新推出的激活函数,例如 swish、GELU ...
1、Relu激活函数 Relu激活函数(The Rectified Linear Unit)表达式为:f(x)=max(0,x)。 2、tensorflow实现 输出为: [[ 0. 10. 0.] [ 0. 2. 0.]] ...
一,常用的内置评估指标 MeanSquaredError(平方差误差,用于回归,可以简写为MSE,函数形式为mse) MeanAbsoluteError (绝对值误差,用于回归,可以简写为MAE,函数形式为mae) MeanAbsolutePercentageError ...
激活函数的作用如下-引用《TensorFlow实践》: 这些函数与其他层的输出联合使用可以生成特征图。他们用于对某些运算的结果进行平滑或者微分。其目标是为神经网络引入非线性。曲线能够刻画出输入的复杂的变化。TensorFlow提供了多种激活函数,在CNN中一般使用tf.nn.relu的原因是 ...
Active Function 激活函数 原创文章,请勿转载哦~!! 觉得有用的话,欢迎一起讨论相互学习~ Tensorflow提供了多种激活函数,在CNN中,人们主要是用tf.nn.relu,是因为它虽然会带来一些信息损失,但是性能较为突出.开始设计模型时,推荐使用 ...
李宏毅老师的课件: http://speech.ee.ntu.edu.tw/~tlkagk/courses/MLDS_2018/Lecture/ForDeep.pdf B站的课件讲解: http ...
最近对tensorflow十分感兴趣,所以想做一个系列来详细讲解tensorflow来。 本教程主要由tensorflow2.0官方教程的个人学习复现笔记整理而来,并借鉴了一些keras构造神经网络的方法,中文讲解,方便喜欢阅读中文教程的朋友,tensorflow官方教程:https ...