局部敏感哈希(Locality-Sensitive Hashing, LSH)方法介绍 本文主要介绍一种用于海量高维数据的近似最近邻快速查找技术——局部敏感哈希(Locality-Sensitive Hashing, LSH),内容包括了LSH的原理、LSH哈希函数集、以及LSH的一些 ...
一 前言 最近在工作中需要对海量数据进行相似性查找,即对微博全量用户进行关注相似度计算,计算得到每个用户关注相似度最高的TOP N个用户,首先想到的是利用简单的协同过滤,先定义相似性度量 cos,Pearson,Jaccard ,然后利用通过两两计算相似度,计算top n进行筛选,这种方法的时间复杂度为 O n 对于每个用户,都和其他任意一个用户进行了比较 但是在实际应用中,对于亿级的用户量,这个 ...
2019-10-17 21:54 0 473 推荐指数:
局部敏感哈希(Locality-Sensitive Hashing, LSH)方法介绍 本文主要介绍一种用于海量高维数据的近似最近邻快速查找技术——局部敏感哈希(Locality-Sensitive Hashing, LSH),内容包括了LSH的原理、LSH哈希函数集、以及LSH的一些 ...
一、概述 近邻搜索在计算机科学中是一个非常基础的问题,在信息检索、模式识别、机器学习、聚类等领域有着广泛的应用。如果在d维空间中,我们有n个数据点,采用暴力搜索寻找最近邻的时间复杂度为O(dn)。当前我们的数据量越来越大,因此我们需要一些新的数据结构来查找最近邻,使得任意给定一个数据就能 ...
1、概念 2、LSH操作 我们描述了LSH可以用于的主要操作类型。拟合的LSH模型具有用于每个操作的方法。 2.1、Feature Transformation 特征转换 2.2、Approximate ...
1. 概述 LSH是由文献[1]提出的一种用于高效求解最近邻搜索问题的Hash算法。LSH算法的基本思想是利用一个hash函数把集合中的元素映射成hash值,使得相似度越高的元素hash值相等的概率也越高。LSH算法使用的关键是针对某一种相似度计算方法,找到一个具有以上描述特性的hash函数 ...
from:https://www.cnblogs.com/maybe2030/p/4953039.html 阅读目录 1. 基本思想 2. 局部敏感哈希LSH 3. 文档相似度计算 局部敏感哈希 ...
局部敏感哈希(Locality Sensitive Hashing,LSH)算法是我在前一段时间找工作时接触到的一种衡量文本相似度的算法。局部敏感哈希是近似最近邻搜索算法中最流行的一种,它有坚实的理论依据并且在高维数据空间中表现优异。它的主要作用就是从海量的数据中挖掘出相似的数据,可以具体 ...
1. 基本思想 局部敏感(Locality Senstitive):即空间中距离较近的点映射后发生冲突的概率高,空间中距离较远的点映射后发生冲突的概率低。 局部敏感哈希的基本思想类似于一种空间域转换思想,LSH算法基于一个假设,如果两个文本在原有的数据空间是相似的,那么分别经过哈希函数转换以后 ...
一. 近邻搜索 从这里开始我将会对LSH进行一番长篇大论。因为这只是一篇博文,并不是论文。我觉得一篇好的博文是尽可能让人看懂,它对语言的要求并没有像论文那么严格,因此它可以有更强的表现力。 局部敏感哈希,英文locality-sensetive hashing,常简称为LSH。局部 ...