最近在做基于MTCNN的人脸识别和检测的项目,在训练模型的过程中总是会不定时地出现损失值为nan的情况,Debug了好久终于找到了问题所在,这里总结以下可能出现nan的几种情况: 1、在分类问题中,我们经常使用到交叉熵损失函数,需要注意的是:由于交叉熵损失函数里有对数计算,因此对数的真数部分 ...
.训练到一半或者刚开始save ckpt的时候会出现如下问题 .根据https: blog.csdn.net qq article details 调大训练batch size,没有成功 .根据https: blog.csdn.net jairana article details fine tune batch norm False,没有成功,learning rate已经是 . 了 .将ex ...
2019-10-15 20:31 0 765 推荐指数:
最近在做基于MTCNN的人脸识别和检测的项目,在训练模型的过程中总是会不定时地出现损失值为nan的情况,Debug了好久终于找到了问题所在,这里总结以下可能出现nan的几种情况: 1、在分类问题中,我们经常使用到交叉熵损失函数,需要注意的是:由于交叉熵损失函数里有对数计算,因此对数的真数部分 ...
现在一直在用TensorFlow训练CNN和LSTM神经网络,但是训练期间遇到了好多坑,现就遇到的各种坑做一下总结 1.问题一;训练CNN的时候出现nan CNN是我最开始接触的网络,我的研究课题就是利用CNN,LSTM等网络对人体动作做识别。动作数据来源于手机的加速度计,做动作的人在固定 ...
问题:在本地开发时使用的是oracle jdk8,没有问题,但是生产上面使用的是openjdk-8u252-b09,生成图片时一直报Invalid argument to native writeImage 代码(报错diam): 解决: 将上面红色的代码 ...
背景 在大多数情况下人们都倾向于使用某些量化指标的平均值,例如CPU的平均使用率、页面的平均响应时间。这种方式的问题很明显,以系统API调用的平均响应时间为例:如果大多数API请求都维持在100ms ...
keras训练cnn模型时loss为nan 1.首先记下来如何解决这个问题的:由于我代码中 model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy']) 即损失函数 ...
1、问题描述:开始训练一切都是那么的平静,很正常! 突然loss变为nan,瞬间懵逼! 2、在网上看了一些解答,可能是梯度爆炸,可能是有关于0的计算。然后我觉得可能是关于0的吧,然后进行了验证。 3、验证方法:因为我使用的是softmax loss, 我直接打印每一步的输出向量中的最大值 ...
梯度爆炸 原因:梯度变得非常大,使得学习过程难以继续 现象:观察log,注意每一轮迭代后的loss。loss随着每轮迭代越来越大,最终超过了浮点型表示的范围,就变成了NaN。 措施: 1. 减小solver.prototxt中的base_lr,至少减小一个数量级。如果有多个loss ...
用法: 1、tf.summary.scalar 用来显示标量信息,其格式为: tf.summary.scalar(tags, values, collections=None, name=None ...