实现方式 以 ℓ2 Regularization 为例,主要有两种实现方式 1. 手动累加 2. 借助于 kernel_regularizer 实例验证 View Code ...
梯度修剪 梯度修剪主要避免训练梯度爆炸的问题,一般来说使用了 Batch Normalization 就不必要使用梯度修剪了,但还是有必要理解下实现的 In TensorFlow, the optimizer s minimize function takes care of both computing the gradients and applying them, so you must i ...
2019-10-11 10:27 0 681 推荐指数:
实现方式 以 ℓ2 Regularization 为例,主要有两种实现方式 1. 手动累加 2. 借助于 kernel_regularizer 实例验证 View Code ...
参考: L1 Norm Regularization and Sparsity Explained for Dummies 专为小白解释的文章,文笔十分之幽默 why does a small L1 norm give a sparse solution? why does ...
在上一篇博客《TensorFlow之DNN(一):构建“裸机版”全连接神经网络》 中,我整理了一个用TensorFlow实现的简单全连接神经网络模型,没有运用加速技巧(小批量梯度下降不算哦)和正则化方法,通过减小batch size,也算得到了一个还可以的结果。 那个网络只有两层 ...
一、范数 tf.norm()张量的范数(向量范数) 二. tf.reduce_min/max/mean():求均值,最大值,最小值 ...
以如下模型为例, 两个Dense层都带有regularizer,因此都有regularization loss项。 访问model.losses可以得到当前的regularization loss 当前状态下第一层和第二层的regularization loss分别 ...
1.指数滑动平均 (ema) 描述滑动平均: with tf.control_dependencies([train_step,ema_op]) 将计算滑动平均与 训练过程绑在一起运 ...
在采用随机梯度下降算法训练神经网络时,使用滑动平均模型可以提高最终模型在测试集数据上的表现。在Tensflow中提供了tf.train.ExponentialMovingAverage来实现滑动平均模型。在初始化ExponentialMovingAverage时,需要提供一个衰减率 ...
tf.trainable_variables可以得到整个模型中所有trainable=True的Variable,也是自由处理梯度的基础 基础梯度操作方法: tf.gradients 用来计算导数。该函数的定义如下所示 def gradients(ys ...