原文链接:http://tecdat.cn/?p=7692 预测通常被认为是报告的自然发展。报告可以帮助我们回答,发生了什么事?预测有助于回答下一个逻辑问题,将会发生什么? Prophet的目的是“使专家和非专家可以更轻松地进行符合需求的高质量预测。 您将学习如何使用Prophet ...
原文链接:http: tecdat.cn p 您将学习如何使用Prophet 在R中 解决一个常见问题:预测公司明年的每日订单。 数据准备与探索 先知最适合每日定期数据以及至少一年的历史数据。 我们将使用SQL处理每天要预测的数据: 现在,我们每天都有数据,我们可以将SQL查询结果集通过管道传递到R笔记本中的R数据框对象中。首先,将您的SQL查询重命名为Daily Orders。然后,在R 中, ...
2019-10-10 16:33 0 416 推荐指数:
原文链接:http://tecdat.cn/?p=7692 预测通常被认为是报告的自然发展。报告可以帮助我们回答,发生了什么事?预测有助于回答下一个逻辑问题,将会发生什么? Prophet的目的是“使专家和非专家可以更轻松地进行符合需求的高质量预测。 您将学习如何使用Prophet ...
https://zh.gluon.ai/chapter_recurrent-neural-networks/lang-model.html 翻译自: https://stackabuse.c ...
原文链接:http://tecdat.cn/?p=6663 此示例中,神经网络用于使用2011年4月至2013年2月期间的数据预测都柏林市议会公民办公室的能源消耗。 每日数据是通过总计每天提供的15分钟间隔的消耗量来创建的。 LSTM简介 LSTM(或长期短期存储器网络)允许分析具有长期 ...
趋势进行预测。在本文中,您将看到如何使用LSTM算法使用时间序列数据进行将来的预测。 数据集 ...
原文链接:http://tecdat.cn/?p=5919 在本文中,我将介绍ARMA,ARIMA(Box-Jenkins),SARIMA和ARIMAX模型如何用于预测给定的时间序列数据。 使用后移运算符计算滞后差异 我们可以使用backshift运算符来执行计算。例如,后轴 ...
原文链接:http://tecdat.cn/?p=22673 原文出处:拓端数据部落公众号 方法 Prophet异常检测使用了Prophet时间序列预测。基本的Prophet模型是一个可分解的单变量时间序列模型,结合了趋势、季节性和节假日效应。该模型预测还包括一个围绕估计的趋势部分 ...
参考资料 深度学习之路(一):用LSTM网络做时间序列数据预测 https://www.jianshu.com/p/6b874e49b906 关于LSTM的输入和训练过程的理解 https://www.cnblogs.com/USTC-ZCC/p ...
原文链接:http://tecdat.cn/?p=4698 介绍 顾名思义,排队论是对用于预测队列长度和等待时间的长等待线的研究。这是一种流行的理论,主要用于运营,零售分析领域。 到目前为止,我们已经解决了传入呼叫量和呼叫持续时间事先已知的情况。在现实世界中,情况并非如此。在现实世界中 ...