损失函数专题 范数 L0范数 L0范数是指向量中非0的元素的个数。如果用L0规则化一个参数矩阵W,就是希望W中大部分元素是零,实现稀疏。 L0范数的应用: 特征选择:实现特征的自动选择,去除无用特征。稀疏化可以去掉这些无用特征,将特征对应的权重置为零。 可解释 ...
种损失函数,你能认识几个 爱编程今天 作者:mingo 敏 链接:https: blog.csdn.net shanglianlm article details tensorflow和pytorch很多都是相似的,这里以pytorch为例。 种损失函数 L 范数损失 L Loss 计算 output 和 target 之差的绝对值。 参数: reduction 三个值,none: 不使用约简 ...
2019-10-09 10:04 0 938 推荐指数:
损失函数专题 范数 L0范数 L0范数是指向量中非0的元素的个数。如果用L0规则化一个参数矩阵W,就是希望W中大部分元素是零,实现稀疏。 L0范数的应用: 特征选择:实现特征的自动选择,去除无用特征。稀疏化可以去掉这些无用特征,将特征对应的权重置为零。 可解释 ...
损失函数(loss function)是用来估量你模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好。损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分。模型的结构风险函数包括了经验风险项和正则项 ...
监督学习中通常通过对损失函数最优化(最小化)来学习模型。 本文介绍了几种损失函数和正则化项以及正则化对模型的影响。 损失函数 损失函数度量模型一次预测的好坏,风险函数度量平均意义下模型预测的好坏。 模型的输入输出是随机变量(X,Y)遵循联合分布P(X,Y),损失函数的期望 ...
一、对于回归问题,基本目标是建模条件概率分布p(t|x) 利用最大似然的方式:negative logarithm of the likelihood 这个函数可以作为优化目标,其中的第二项与参数无关,在优化的时候不用计算在内。实际中所用到的各种不同的目标函数不过是对于的形式做了 ...
机器学习中的损失函数 (着重比较:hinge loss vs softmax loss) 1. 损失函数 损失函数(Loss function)是用来估量你模型的预测值 f(x)">f(x)f(x) 与真实值 Y">YY 的不一致程度 ...
1. L2范数损失函数,也叫欧几里得损失函数,实际上是预测值到目标的距离的平方,tensorflow中用法:tf.nn.l2_loss(),这个损失函数的优点在于曲线在接近目标时足够平缓,所以可以利用这个特点在接近目标时,逐渐缓慢收敛过去。这个损失函数一般用在回归问题。 2. L1范数损失函数 ...
tf.train.Optimizer的子类,下面介绍一下另外三种常用的优化器(分别为Momentum、 ...
Reference: https://blog.csdn.net/marsjhao/article/details/72630147 分类问题损失函数-交叉熵(crossentropy) 交叉熵描述的是两个概率分布之间的距离,分类中广泛使用的损失函数,公式 ...