ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里。这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC。 ROC曲线 ...
版权声明:本文为博主原创文章,遵循 CC . BY SA 版权协议,转载请附上原文出处链接和本声明。 本文链接: https: blog.csdn.net u article details 面试的时候,一句话说明AUC的本质和计算规则: AUC:一个正例,一个负例,预测为正的概率值比预测为负的概率值还要大的可能性。 所以根据定义:我们最直观的有两种计算AUC的方法 :绘制ROC曲线,ROC曲线 ...
2019-10-01 13:00 0 916 推荐指数:
ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,对两者的简单介绍见这里。这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC。 ROC曲线 ...
function [auc, curve] = ROC(score, target, Lp, Ln)% This function is to calculat the ordinats of points of ROC curve and the area% under ROC curve ...
来自:https://blog.csdn.net/shenxiaoming77/article/details/72627882 来自:https://blog.csdn.net/u010705209/article/details/53037481 在分类模型中,roc曲线和auc曲线 ...
申明:该文章转载自vividfree的博客 原来博客链接: http://vividfree.github.io/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/2015/11/20/understanding-ROC-and-AUC 另外还有一个 ...
roc_auc_score(Receiver Operating Characteristics(受试者工作特性曲线,也就是说在不同的阈值下,True Positive Rate和False Positive Rate的变化情况)) 我们只考虑判为正的情况时,分类器在正例和负例两个集合中分别预测 ...
一. ROC曲线概念 二分类问题在机器学习中是一个很常见的问题,经常会用到。ROC (Receiver Operating Characteristic) 曲线和 AUC (Area Under the Curve) 值常被用来评价一个二值分类器 (binary classifier) 的优劣 ...
ROC、AUC 的理论知识 请参考我的博客 分类模型评估 本文旨在 总结 其在 SKlearn 中的用法 基础用法 先看源码 然后看一个最普通的示例,包括 ROC 的计算、AUC 的计算、ROC 曲线绘制 输出 EER 选择模型阈值 ...
1.概述 AUC(Area Under roc Curve)是一种 ...