决策树的划分依据-信息增益率C4.5 1 背景 信息增益准则ID3对可取值数目较多的属性有所偏好,为减少这种偏好可能带来的不利影响,著名的 C4.5 决策树算法[Quinlan, 1993J 不直接使用信息增益,而是使用"增益率" (gain ratio) 来选择最优划分 ...
如图,为使用到的公式,信息熵表明样本的混乱程度,增益表示熵减少了,即样本开始分类,增益率是为了平衡增益准则对可取值较多的属性的偏好,同时增益率带来了对可取值偏小的属性的偏好,实际中,先用增益进行筛选,选取大于增益平均值的,然后再选取其中增益率最高的。 以下代码纯粹手写,未参考其他人代码,如果问题,请不吝赐教。 ,计算信息熵的函数 ,计算增益及属性a的固有值 IV ,构建节点类,以便构建树 ,构建树 ...
2019-09-30 00:38 1 468 推荐指数:
决策树的划分依据-信息增益率C4.5 1 背景 信息增益准则ID3对可取值数目较多的属性有所偏好,为减少这种偏好可能带来的不利影响,著名的 C4.5 决策树算法[Quinlan, 1993J 不直接使用信息增益,而是使用"增益率" (gain ratio) 来选择最优划分 ...
数据集如下: 基于信息增益的ID3决策树的原理这里不再赘述,读者如果不明白可参考西瓜书对这部分内容的讲解。 python实现代码如下: 绘制的决策树如下: ...
特征进行决策树的构建呢? 最基础的是使用信息增益来表示。 首先得了解熵和条件熵的定义。 熵:用于表 ...
参考:《机器学习实战》- Machine Learning in Action 一、 基本思想 我们所熟知的决策树的形状可能如下: 使用决策树算法的目的就是生成类似于上图的分类效果。所以算法的主要步骤就是如何去选择结点。 划分数据集的最大原则是:将无序的数据变得更加有 ...
决策树和KNN是机器学习的入门级别的算法,所以面试的时候都时常会有面试官要求将决策树写出来以用来检验面试者的算法基本素养。 1.信息熵 信息熵是表示数据的混乱程度(物理学当中就有热熵来表示分子混乱程度)。信息熵表现为-log(信息的概率) 那么整体的信息熵的数学期望:对概率*-log(概率 ...
决策树的Python实现 2017-04-07 Anne Python技术博文 前言: 决策树的一个重要的任务 是为了理解数据中所蕴含的知识信息,因此决策树可以使 ...
决策树 算法优缺点: 优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关的特征数据 缺点:可能会产生过度匹配的问题 适用数据类型:数值型和标称型 算法思想: 1.决策树构造的整体思想: 决策树 ...
一、决策树不同算法信息指标: 发展过程:ID3 -> C4.5 -> Cart; 相互关系:ID3算法存在这么一个问题,如果某一个特征中种类划分很多,但是每个种类中包含的样本个数又很少,就会导致信息增益很大的情况,但是这个特征和结果之间并没有很大的相关性。所以这个特征就不是我们最终 ...