原文:【深度学习】Focal Loss 与 GHM——解决样本不平衡问题

Focal Loss 与 GHM Focal Loss Focal Loss 的提出主要是为了解决难易样本数量不平衡 注意:这有别于正负样本数量不均衡问题 问题。下面以目标检测应用场景来说明。 一些 one stage 的目标检测器通常会产生很多数量的 anchor box,但是只有极少数是正样本,导致正负样本数量不均衡。这里假设我们计算分类损失函数为交叉熵公式。 由于在目标检测中,大量的候选目标 ...

2019-09-28 11:33 0 1226 推荐指数:

查看详情

处理样本不平衡LOSSFocal Loss

0 前言 Focal Loss是为了处理样本不平衡问题而提出的,经时间验证,在多种任务上,效果还是不错的。在理解Focal Loss前,需要先深刻理一下交叉熵损失,和带权重的交叉熵损失。然后我们从样本权重的角度出发,理解Focal Loss是如何分配样本权重的。Focal是动词Focus的形容词 ...

Mon Jan 06 19:50:00 CST 2020 2 6373
怎样解决样本不平衡问题

  这几年来,机器学习和数据挖掘非常火热,它们逐渐为世界带来实际价值。与此同时,越来越多的机器学习算法从学术界走向工业界,而在这个过程中会有很多困难。数据不平衡问题虽然不是最难的,但绝对是最重要的问题之一。 一、数据不平衡   在学术研究与教学中,很多算法都有一个基本假设,那就是数据分布 ...

Fri Aug 31 00:34:00 CST 2018 1 7318
样本不平衡问题如何解决

样本不平衡问题如何解决 1. 什么是样本不平衡问题? 所谓的类别不平衡问题指的是数据集中各个类别的样本数量极不均衡。以二分类问题为例,假设正类的样本数量远大于负类的样本数量,通常情况下把样本类别比例超过4:1(也有说3:1)的数据就可以称为不平衡数据。 样本不平衡实际上是一种非常常见的现象 ...

Fri May 01 05:58:00 CST 2020 0 2392
机器学习样本不平衡处理

样本不平衡往往会导致以下问题: 对比例小的样本造成过拟合,也就是说预测偏向样本数较多的分类。这样就会大大降低模型的范化能力。往往accuracy(准确率)很高,但auc很低。 针对样本不平衡问题,有以下几种常见的解决思路: 搜集更多的数据 改变评判指标 对数据进行采样 ...

Mon Jan 06 22:37:00 CST 2020 0 794
样本不平衡的处理

分类问题的一个underlying assumption是各个类别的数据都有自己的分布,当某类数据少到难以观察结构的时候,我们可以考虑抛弃该类数据,转而学习更为明显的多数类模式,而后将不符合多数类模式的样本判断为异常/少数类,某些时候会有更好的效果。此时该问题退化为异常检测(anomaly ...

Sun Nov 03 02:12:00 CST 2019 0 782
SMOTE算法解决样本不平衡

首先,看下Smote算法之前,我们先看下当正负样本不均衡的时候,我们通常用的方法: 抽样 常规的包含过抽样、欠抽样、组合抽样 过抽样:将样本较少的一类sample补齐 欠抽样:将样本较多的一类sample压缩 组合抽样:约定一个量级N,同时进行过抽样和欠抽样,使得正负样本量和等于 ...

Fri Mar 27 03:50:00 CST 2020 0 2257
欠采样和过采样解决分类样本不平衡问题

什么是样本不平衡 对于二分类问题,如果两个类别的样本数目差距很大,那么训练模型的时候会出现很严重的问题。举个简单的例子,猫狗图片分类,其中猫有990张,狗有10张,这时候模型只需要把所有输入样本都预测成猫就可以获得99%的识别率,但这样的分类器没有任何价值,它无法预测出狗。 类别不平衡 ...

Tue May 25 03:36:00 CST 2021 0 3333
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM