BloomFilter算法,是一种大数据排重算法。在一个数据量很大的集合里,能准确断定一个对象不在集合里;判断一个对象有可能在集合里,而且占用的空间不大。它不适合那种要求准确率很高的情况,零错误的场景。通过牺牲部分准确率达到高效利用空间的目的 ...
布隆算法最详解 本文源地址: http: www.fullstackyang.com ...,转发请注明该地址或segmentfault地址,谢谢 . 背景知识 在网上已经有很多关于布隆过滤器的介绍了,这里就不再赘述,下面简单地提炼几个要点: 布隆过滤器是用来判断一个元素是否出现在给定集合中的重要工具,具有快速,比哈希表更节省空间等优点,而缺点在于有一定的误识别率 false positive,假 ...
2019-10-08 17:47 0 1563 推荐指数:
BloomFilter算法,是一种大数据排重算法。在一个数据量很大的集合里,能准确断定一个对象不在集合里;判断一个对象有可能在集合里,而且占用的空间不大。它不适合那种要求准确率很高的情况,零错误的场景。通过牺牲部分准确率达到高效利用空间的目的 ...
Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某 ...
比特币 比较火 书本资料也较少 对cache缓存的概念就不讲了 Filter 判断这个元素在不在 经过filter判断这个元素在不在如果不在的话肯定就不在 而如果在的话(有误差)在从数据库 ...
算法(3)---布隆过滤器原理 开发一个电商项目,因为数据量一直在增加(已达亿级),所以需要重构之前开发好的秒杀功能,为了更好的支持高并发,在验证用户是否重复购买的环节,就考虑用布隆过滤器。 也顺便更加深入的去了解下布隆过滤器的原理,感觉还是蛮有意思的,这一连串的公式不静 ...
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天的文章和大家一起来学习大数据领域一个经常用到的算法——布隆过滤器。如果看过《数学之美》的同学对它应该并不陌生,它经常用在集合的判断上,在海量数据的场景当中用来快速地判断某个元素在不在一个庞大的集合当中。它的原理不难,但是设计 ...
Hash算法在应用中又称为指纹(fingerprint)或者摘要(digest)算法,是一种将任意长度的明文串映射为较短的数据串(hash值)的算法,目前的Hash算法主要是MD5系列算法与SHA系统算法 一个好的Hash算法需要具有四个特性,即正向快速 ,逆向困难,输入敏感 ,冲突避免 ...
1、什么是布隆过滤器 布隆过滤器是一种概率空间高效的数据结构,特点是高效地插入和查询,用来告诉你 “某样东西一定不存在或者可能存在”。 相比于传统的 List、Set、Map 等数据结构,它更高效、占用空间更少,但是缺点是其返回的结果是概率性的,而不是确切的。 2、实现原理 ...
一、什么是布隆过滤器? 布隆过滤器可以用来判断一个元素是否在一个集合中。它的优势是只需要占用很小的内存空间以及有着高效的查询效率。 对于布隆过滤器而言,它的本质是一个位数组:位数组就是数组的每个元素都只占用1bit ,并且每个元素只能是0或者1 布隆过滤器除了一个位数组,还有 K 个哈希函数 ...