一、图 传统的欧几里得空间数据:文本、图像、视频等【LSTM、CNN可训练】 非欧几里得空间数据:图结构(包含对象和关系,如社交网络、电商网络、生物网络和交通网络等)【图卷积等技术可训练】 1、欧几里得空间 也称欧式空间,二维、三维空间的一般化。将距离、长度和角度等概念转化成任意维度 ...
如何解决图神经网络 GNN 训练中过度平滑的问题 转自知乎 https: www.zhihu.com question answer 即在图神经网络的训练过程中,随着网络层数的增加和迭代次数的增加,每个节点的隐层表征会趋向于收敛到同一个值 即空间上的同一个位置 。出现这种情况的具体原 泻药..首先要搞清楚图神经网络不能加深的原因是什么。常见的原因有三种: 数据集太小,overfitting的问题, ...
2019-09-27 10:09 0 1494 推荐指数:
一、图 传统的欧几里得空间数据:文本、图像、视频等【LSTM、CNN可训练】 非欧几里得空间数据:图结构(包含对象和关系,如社交网络、电商网络、生物网络和交通网络等)【图卷积等技术可训练】 1、欧几里得空间 也称欧式空间,二维、三维空间的一般化。将距离、长度和角度等概念转化成任意维度 ...
RNN: 循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入 在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursive neural network)。 RNN的结构 ...
图神经网络小结 图神经网络小结 图神经网络分类 GCN: 由谱方法到空域方法 GCN概述 GCN的输出机制 GCN的不同方法 基于谱方法的GCN 初始 切比雪夫K ...
2020必火的图神经网络(GNN)是什么?有什么用? 2020-02-20阅读 2090 导读:近年来,作为一项新兴的图数据学习技术,图神经网络(GNN)受到了非常广泛的关注。2018年年末,发生了一件十分 ...
part1/经典款论文 1. KDD 2016,Node2vec 经典必读第一篇,平衡同质性和结构性 《node2vec: Scalable Feature Learning for Networ ...
https://zhuanlan.zhihu.com/p/75307407 本篇文章是我在2019年8月阅读完论文“Wu, Zonghan , et al. "A Comprehensive Sur ...
图神经网络 先导概念 传统机器学习与图神经网络的关系 传统机器学习数据类型:矩阵、张量、序列、时间序列;但是现实生活中的数据更多是图的结构; 现实的数据可以转化为图的形式(包括传统机器学习数据),图机器学习问题可概括为节点分类问题,边预测问题 传统机器学习技术假设样本独立同分 ...
1.train loss 不断下降,dev(或test) loss不断下降:说明网络仍在学习。 2.train loss 不断下降,dev(或test) loss趋于不变:说明网络过拟合。 3.train loss 趋于不变,dev(或test) loss不断下降:说明数据集100%有问题 ...