1. 四个概念定义:TP、FP、TN、FN 先看四个概念定义: - TP,True Positive - FP,False Positive - TN,True Negative - ...
一篇文章就搞懂啦,这个必须收藏 我们以图片分类来举例,当然换成文本 语音等也是一样的。 Positive 正样本。比如你要识别一组图片是不是猫,那么你预测某张图片是猫,这张图片就被预测成了正样本。 Negative 负样本。比如你要识别一组图片是不是猫,那么你预测某张图片不是猫,这张图片就被预测成了负样本。 TP 一组预测为正样本的图片中,真的是正样本的图片数。 TN: 一组预测为负样本的图片中 ...
2019-09-24 10:36 0 914 推荐指数:
1. 四个概念定义:TP、FP、TN、FN 先看四个概念定义: - TP,True Positive - FP,False Positive - TN,True Negative - ...
1. 四个概念定义:TP、FP、TN、FN 先看四个概念定义: - TP,True Positive - FP,False Positive - TN,True Negative - FN,Fals ...
当我们在谈论一个模型好坏的时候,我们常常会听到准确率(Accuracy)这个词,我们也会听到"如何才能使模型的Accurcy更高".那么是不是准确率最高的模型就一定是最好的模型? 这篇博文会向大家解释准确率并不是衡量模型好坏的唯一指标,同时我也会对其他衡量指标做出一些简单 ...
最近做了一些分类模型,所以打算对分类模型常用的评价指标做一些记录,说一下自己的理解。使用何种评价指标,完全取决于应用场景及数据分析人员关注点,不同评价指标之间并没有优劣之分,只是各指标侧重反映的信息不同。为了便于后续的说明,先建立一个二分类的混淆矩阵 ,以下各参数的说明都是针对二元分类 ...
准确率 Accuracy 精确率 Precision 召回率 Recall F1(综合Precision与Recall) ROC曲线 PR曲线 ...
原文链接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要内容:机器学习中常见的几种评价指标,它们各自的含义和计算(注意本文针对二元分类器!) 1、混淆矩阵 True Positive(真正,TP):将正类预测 ...
准确率(Accuracy)、精确率(Precision)和召回率(Recall)的区别 目录 数量 指标 数量 对于一个二分类问题,我们定义如下指标: :True Positive,即正确预测出的正样本个数 :False Positive,即错误预测 ...
记正样本为P,负样本为N,下表比较完整地总结了准确率accuracy、精度precision、召回率recall、F1-score等评价指标的计算方式: (右键点击在新页面打开,可查看清晰图像) 简单版: ******************************************************************** ...