...
2019-09-15 21:31 0 351 推荐指数:
摘要: 提出了一个新的语言表示模型(language representation), BERT: Bidirectional Encoder Representations from Transformers。不同于以往提出的语言表示模型,它在每一层的每个位置都能利用其左右两侧的信息用于学习 ...
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding 摘要 我们引入了一个新的叫做bert的语言表示模型,它用transformer的双向编码器表示。与最近的语言表示模型不同,BERT ...
目录 研究背景 论文思路 实现方式细节 实验结果 附件 专业术语列表 一、研究背景 1.1 涉及领域,前人工作等 本文主要涉及NLP的一种语言模型,之前已经 ...
LayoutLM: Pre-training of Text and Layout for Document Image Understanding 摘要 预训练技术已经在最近几年的NLP几类任务上取得成功。尽管NLP应用的预训练模型被广泛使用,但它们几乎只关注于文本级别的操作,而忽略 ...
概述: UniLM是微软研究院在Bert的基础上,最新产出的预训练语言模型,被称为统一预训练语言模型。它可以完成单向、序列到序列和双向预测任务,可以说是结合了AR和AE两种语言模型的优点,Uni ...
深度神经网络结构以及Pre-Training的理解 Logistic回归、传统多层神经网络 1.1 线性回归、线性神经网络、Logistic/Softmax回归 线性回归是用于数据拟合的常规手段,其任务是优化目标函数:h ...