名词解释 Theorem:就是定理,比较重要的,简称是 Thm。 Lemma:小小的定理,通常是为了证明后面的定理,如果证明的篇幅很长時,可能會把证明拆成几个部分來论述,虽然篇幅可能变多,但派络却很清楚。 Corollary:推论。由定理立即可推知的結果。 Property:性质 ...
定义: 对于一种事物的本质特征或一个概念的内涵和外延所作的简要说明。相当于数学上的对未知数的设定赋值,比如 设某未知数为已知字母x以便于简化计算, 对某个命名的词汇赋与一定的意义或形象,则有利于交流中的识别及认同。 公理: 在数学中,公理这一词被用于两种相关但相异的意思之下 逻辑公理和非逻辑公理。在这两种意义之下,公理都是用来推导其他命题的起点。和定理不同,一个公理 除非有冗余的 不能被其他公理推 ...
2019-09-13 16:44 0 380 推荐指数:
名词解释 Theorem:就是定理,比较重要的,简称是 Thm。 Lemma:小小的定理,通常是为了证明后面的定理,如果证明的篇幅很长時,可能會把证明拆成几个部分來论述,虽然篇幅可能变多,但派络却很清楚。 Corollary:推论。由定理立即可推知的結果。 Property:性质 ...
Latex中定义、定理、引理、证明 设置方法总结 在LaTex中需要有关定理、公理、命题、引理、定义等时,常用如下命令 \newtheorem{定理环境名}{标题}[主计数器名] \newtheorem{theorem}{Theorem}[Chapter] 意思就是定义 ...
命题逻辑公理系统 概念 从一些公理出发,根据演绎法,推导出一系列定理,形成的演绎体系叫做公理系统。 命题逻辑的重言式^ 1可以组成一个公理系统 初始命题是重言式 从公理出发,利用推理规则,可以推导出定理,定理都是重言式 该系统推出的都是重言式,而且能推出所有重言式 初始 ...
1、置换 置换简单来说就是对元素进行重排列,如下图所示。置换是[1,n]到[1,n]的一一映射。 举个直观的例子,将正方形绕其中心逆时针旋转90度,可以看成是正方形四个顶点的一个置换。关于 ...
Burnside引理与polay定理 引入概念 1.置换 简单来说就是最元素进行重排列 是所有元素的异议映射,即\([1,n]\)映射到\([1,n]\) \[\begin{pmatrix} 1&2&i \ldots n \\ a_{1} & a_ ...
将学习到什么 从 Schur 的酉三角化定理可以收获一批结果,在这一部分介绍重要的几个. 迹与行列式 相似矩阵具有相同的特征多项式, 从特征多项式一节中, 我们又知道,相似矩阵的迹以及行列式都是相同的,且分别用所有特征值的和与积表示,所以对于矩阵 \(A\in M_n ...
欧拉定理: 若正整数 a , n 互质,则 aφ(n)≡1(mod n) 其中 φ(n) 是欧拉函数(1~n) 与 n 互质的数。 证明如下: 不妨设X1,X2 ...... Xφn是1~n与n互质的数。 首先我们先来考虑一些数:aX1,aX2 ...
PS: 写的时候博主比较naive,所有的变换都是向右结合的,还请谅解( 0. 引子 (update 2020/12/21){#s-0} 直接上理论会有点难受,不妨先来点简单的计数题找找感觉? ...