注意力机制 注意力模型也称资源分配模型,它借鉴了人类的选择注意力机制,其核心思想是对目标数据进行加权变换。 截止到目前,尝试过的注意力机制,要么是 (1)基于时间步的注意力机制 (2)基于维度的注意力机制(大佬魔改) 都是用于多维数据处理的 在一篇论文中,提到了针对一维向量的注意力机制 ...
注意力往往与encoder decoder seq seq 框架搭在一起,假设我们编码前与解码后的序列如下: 编码时,我们将source通过非线性变换到中间语义: 则我们解码时,第i个输出为: 可以看到,不管i为多少,都是基于相同的中间语义C进行解码的,也就是说,我们的注意力对所有输出都是相同的。所以,注意力机制的任务就是突出重点,也就是说,我们的中间语义C对不同i应该有不同的侧重点,即上式变为 ...
2019-09-10 11:05 1 3210 推荐指数:
注意力机制 注意力模型也称资源分配模型,它借鉴了人类的选择注意力机制,其核心思想是对目标数据进行加权变换。 截止到目前,尝试过的注意力机制,要么是 (1)基于时间步的注意力机制 (2)基于维度的注意力机制(大佬魔改) 都是用于多维数据处理的 在一篇论文中,提到了针对一维向量的注意力机制 ...
注意力的种类有如下四种: 加法注意力, Bahdanau Attention 点乘注意力, Luong Attention 自注意力, Self-Attention 多头点乘注意力, Multi-Head Dot Product Attention(请转至Transformer ...
注意力机制分为:通道注意力机制, 空间注意力机制, 通道_空间注意力机制, 自注意力机制 参考: https://blog.csdn.net/weixin_44791964/article/details/121371986 通道注意力机制 SENet 其重点是获得输入进来的特征层 ...
model 实现: 参考来源:https://keras.io/examples/nlp/text_classification_with_transformer/ 注意一点:输出是的shape=(?,?,dim),实际过程中,需要明确第二维真实数据,手动更改如下: ...
有一些其他理论先暂时不讲了,直奔今天的主题 视觉注意力机制 视觉注意力机制根据 关注域 的不同,可分为三大类:空间域、通道域、混合域 空间域:将图片中的 空间域信息 做对应的 变换,从而将关键得信息提取出来。对空间进行掩码的生成,进行打分,代表是 Spatial Attention ...
注意力机制中的软和硬 注意力机制是当前深度学习领域比较流行的一个概念。其模仿人的视觉注意力模式,每次只关注与当前任务最相关的源域信息,使得信息的索取更为高效。 注意力机制已在语言模型、图像标注等诸多领域取得了突破进展。 注意力机制可分为软和硬两类: 软性注意力(Soft ...
一、传统编码-解码机制 设输入序列$\{x^1,x^2,...,x^n\}$,输出序列$\{y^1,y^2,...,y^m\}$,encoder的隐向量为$h_1,h_2,...$,decoder的隐向量为$s_1,s_2,...$。 解码器的输入只有一个向量,该向量就是输入序列经过编码器 ...
attention机制原多用于NLP领域,是谷歌提出的transformer架构中的核心概念。现在cv领域也开始越来越多的使用这种方法。本次分享对注意力机制进行了相关的梳理,旨在帮助大家入门attention机制,初步了解attention的结构以及背后原理。 1. attention概念 ...