1.1 什么是凸集? 简单来说, 凸集是一个点集, 这个点集有一个性质, 就是在这个集合中任取不同的两个点x和y, 他们之间的线段(包括端点)上的点都属于这个点集,那么就说这个点集是一个凸集。 比如下图中左边的图形是凸集,而右边不是,因为我们可以找到两个点,使它们之间的线段上的点不在集合中 ...
凸优化问题 Convex Problems 凸优化的广义定义 广义上讲,目标函数是凸函数,且相关约束是凸集约束,那么这个问题就称为凸优化。 但实际上我们经常遇见的凸优化问题范围会更小一点。 一般优化问题的描述 begin aligned min qquad amp f x s.t qquad amp f i x leq , quad i ,...,m amp h i x , quad i ,... ...
2019-09-09 16:42 0 596 推荐指数:
1.1 什么是凸集? 简单来说, 凸集是一个点集, 这个点集有一个性质, 就是在这个集合中任取不同的两个点x和y, 他们之间的线段(包括端点)上的点都属于这个点集,那么就说这个点集是一个凸集。 比如下图中左边的图形是凸集,而右边不是,因为我们可以找到两个点,使它们之间的线段上的点不在集合中 ...
典型的凸优化问题 什么样的问题是一个凸优化问题呢? \[\begin{aligned} & min \quad f_0(x) \\ & s.t. \quad f_i(x) \leq 0 \qquad i=1,...,m \\ & \qquad \ a_i^Tx ...
凸集 集合C内任意两点间的线段也均在集合C内,则称集合C为凸集。 \(\forall x_1, x_2 \in C, \forall \theta \in [0,1], 则 x= \theta * x_1 + (1-\theta)*x_2 \in C ...
一、无约束优化 对于无约束的优化问题,直接令梯度等于0求解。 如果一个函数$f$是凸函数,那么可以直接通过$f(x)$的梯度等于0来求得全局极小值点。 二、有约束优化 若$f(x),h(x),g(x)$三个函数都是线性函数,则该优化问题称为线性规划。若任意 ...
目录 1. 凸集 2. 仿射集 3.凸函数 4.凸优化问题 最近学习了一些凸优化的知识,想写几篇随笔作为总结备忘。在此篇中我们简要地介绍一点点基本概念。 1. 凸集 **定义1. 集合$S\in\mathbb{R}^{n ...
概念 1)凸优化:是指一种比较特殊的优化,是指求取最小值的目标函数为凸函数的一类优化问题。 2)两个不等式: 两个正数的算数平均值大于几何平均值,即: 给定可逆矩阵Q,对于任意的向量x,y有: 3)凸集:集合C中任意两个不同点的线段仍在集合C内,则称集合S ...
03-凸优化问题 目录 一、一般优化问题 二、凸优化问题 2.1 凸优化问题定义 2.2 凸优化问题的最优解 2.3 等价问题化简 三、拟凸优化问题 四、典型凸优化问题 4.1 线性规划(LP ...
1. 概述 \(\quad\)那么开始第二期,介绍凸锥和常见的集合,这期比较短(因为公式打得太累了),介绍凸集和凸锥与仿射集的意义在哪呢,为的就是将很多非凸集合转化为凸集的手段,其中,又以凸包(包裹集合所有点的最小凸集)为最常用的手段,在细节一点,闭凸包(闭合的凸包)是更常用的手段。 2. 凸 ...