原文:浅谈过拟合问题与梯度爆炸问题

算法常见面试问题总结 前言: 这几天忙着秋招,也没时间总结自己最近学习的知识点,由于自己应聘的是算法岗位,所以就把最近面试时遇到的问题和大家一起分享一下,有什么不对的还需各位读者指出来。最后希望自己和我的那个她能够找到一份满意的工作。 解决过拟合的问题 .什么是过拟合 一般提及到过拟合就是说在训练集上模型表现很好,但是在测试集上效果很差,即模型的泛化能力不行。过拟合是模型训练过程中参数拟合的问题, ...

2019-09-07 22:47 0 357 推荐指数:

查看详情

梯度消失和梯度爆炸问题详解

1.为什么使用梯度下降来优化神经网络参数? 反向传播(用于优化神网参数):根据损失函数计算的误差通过反向传播的方式,指导深度网络参数的更新优化。 采取反向传播的原因:首先,深层网络由许多线性层和非线性层堆叠而来,每一层非线性层都可以视为是一个非线性函数(非线性来自于非线性 ...

Sun May 17 19:13:00 CST 2020 0 675
循环神经网络梯度消失/梯度爆炸问题

2019-08-27 15:42:00 问题描述:循环神经网路为什么会出现梯度消失或者梯度爆炸问题,有哪些改进方案。 问题求解: 循环神经网络模型的求解可以采用BPTT(Back Propagation Through Time,基于时间的反向传播)算法实现,BPTT实际上是反向传播算法 ...

Wed Aug 28 00:07:00 CST 2019 0 704
梯度消失(vanishing gradient)与梯度爆炸(exploding gradient)问题

(1)梯度不稳定问题: 什么是梯度不稳定问题:深度神经网络中的梯度不稳定性,前面层中的梯度或会消失,或会爆炸。 原因:前面层上的梯度是来自于后面层上梯度的乘乘积。当存在过多的层次时,就出现了内在本质上的不稳定场景,如梯度消失和梯度爆炸。 (2)梯度消失(vanishing ...

Fri Oct 20 23:16:00 CST 2017 0 2998
LSTM改善RNN梯度弥散和梯度爆炸问题

我们给定一个三个时间的RNN单元,如下: 我们假设最左端的输入 为给定值, 且神经元中没有激活函数(便于分析), 则前向过程如下: 在 时刻, 损失函数为 ,那么如果我们要训练RNN时, 实际上就是是对 求偏导, 并不断调整它们以使得 尽可能达到最小(参见反向传播算法与梯度 ...

Wed Jul 10 03:13:00 CST 2019 2 675
RNN梯度消失和爆炸的原因 以及 LSTM如何解决梯度消失问题

RNN梯度消失和爆炸的原因 经典的RNN结构如下图所示: 假设我们的时间序列只有三段, 为给定值,神经元没有激活函数,则RNN最简单的前向传播过程如下: 假设在t=3时刻,损失函数为 。 则对于一次训练任务的损失函数为 ,即每一时刻损失值的累加 ...

Mon May 13 05:28:00 CST 2019 1 2765
梯度弥散与梯度爆炸

问题描述 先来看看问题描述。 当我们使用sigmoid funciton 作为激活函数时,随着神经网络hidden layer层数的增加,训练误差反而加大了,如上图所示。 下面以2层隐藏层神经网络为例,进行说明。 结点中的柱状图表示每个神经元参数的更新速率(梯度)大小,有图中 ...

Tue Sep 05 19:30:00 CST 2017 1 27714
梯度弥散和梯度爆炸

layer的梯度通过训练变大,而后面layer的梯度指数级增大,这种现象又叫做梯度爆炸(explodin ...

Sat Feb 23 23:11:00 CST 2019 0 898
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM