通常实时的数据包括重复的文本列。例如:性别,国家和代码等特征总是重复的。这些是分类数据的例子。 分类变量只能采用有限的数量,而且通常是固定的数量。除了固定长度,分类数据可能有顺序,但不能执行数字操作。 分类是Pandas数据类型。 分类数据类型在以下情况下非常有用 - 一个字符串变量 ...
通常实时的数据包括重复的文本列。例如:性别,国家和代码等特征总是重复的。这些是分类数据的例子。 分类变量只能采用有限的数量,而且通常是固定的数量。除了固定长度,分类数据可能有顺序,但不能执行数字操作。 分类是Pandas数据类型。 分类数据类型在以下情况下非常有用 - 一个字符串变量 ...
这是对Pandas分类数据类型的介绍,包括与R的简短比较factor。 Categoricals是与统计信息中的分类变量相对应的Pandas数据类型。分类变量具有有限的且通常是固定数量的可能值(R中的categories; levels)。例子包括性别,社会阶层,血型,国家归属,观察 ...
在 pandas 中提供了利用映射关系来实现某些操作的函数,具体如下: replace() 函数:替换元素; map() 函数:新建一列; rename() 函数:替换索引。 一、replace() 用映射替换元素 在数据处理时,经常会遇到需要将数据结构中原来的元素根据实际 ...
今天碰到一个错误,一个字典取值报keyError, 一查看key, 字符串类型的数字后面多了小数点0, 变成了float的样子了。 发现了pandas一个坑:如果列有NAN,则默认给数据转换为float类型! 来源:https://stackoverflow.com/questions ...
重采样(resampling)指的是将时间序列从一个频率转换到另一个频率的过程,其中: 高频转为低频成为降采样(下采样) 低频转为高频成为升采样(上采样) 1、使用resample()方法进行重采样 例:现有一个以年月日为索引的时间序列ts,将其重采样为年月的频率,并计算 ...
某列转换为字符串:df['BucketType'] = pd.Series(df['BucketType'], dtype="string")df['BucketType'] = pd.Series(df['BucketType'], dtype=pd.StringDtype())df ...
说明:本片博文接上篇博文【 Pandas数据预处理之数据转换(df.map()、df.replace())】 二、哑变量编码 1、什么叫做哑变量? 将类别型特征转化“哑变量矩阵”或是“指标矩阵”,让类别特征转换成数值特征的过程。相当与标签化和OneHOt编码,具体可参考另一篇博文【数据 ...
说明: 1 string_data 是挑出来的 需要转成数值型特征的 分类特征 2 转换后,通常要将 array 类型的结果转成 DataFrame,与其他的特征合并 ...