深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Ad ...
版权声明:本文为博主原创文章,遵循 CC . BY SA 版权协议,转载请附上原文出处链接和本声明。 本文链接:https: blog.csdn.net u article details 梯度下降算法针对凸优化问题原则上是可以收敛到全局最优的,因为此时只有唯一的局部最优点。而实际上深度学习模型是一个复杂的非线性结构,一般属于非凸问题,这意味着存在很多局部最优点 鞍点 ,采用梯度下降算法可能会陷 ...
2019-09-05 09:41 0 443 推荐指数:
深度学习最全优化方法总结比较(SGD,Adagrad,Adadelta,Ad ...
前言 这里讨论的优化问题指的是,给定目标函数f(x),我们需要找到一组参数x(权重),使得f(x)的值最小。 本文以下内容假设读者已经了解机器学习基本知识,和梯度下降的原理。 SGD SGD指stochastic gradient descent,即随机梯度下降。是梯度下降 ...
SGD: 1、随机梯度下降最大的缺点在于每次更新可能并不会按照正确的方向进行,因此可以带来优化波动(扰动) 2、由于波动,因此会使得迭代次数(学习次数)增多 ...
深度学习模型优化方法有: (1)模型压缩:模型权重量化、模型权重稀疏、模型通道剪枝 (2)优化推理引擎:TVM、tensorRT、OpenVINO 模型压缩 (1)quantization:模型权重量化 (2)sparsification:模型权重稀疏 (3)channel pruning ...
转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 全连接神经网络 辅助阅读:TensorFlow中文社区教程 - 英文官方教程 代码 ...
关于深度学习的优化方法(On Optimization Methods for Deep Learning) 摘要 在训练深度学习时我们的主要方法是随机梯度下降法(stochastic gradient descent methods , SGDs)。尽管它易于实现,但SGDs调整困难 ...
梯度下降算法 梯度下降的框架主要分三种:1,全量梯度下降。每次使用全部的样本来更新模型参数,优点是收敛方向准确,缺点是收敛速度慢,内存消耗大。2,随机梯度下降。每次使用一个样本来更新模型参数,优点是学习速度快,缺点是收敛不稳定。3,批量梯度下降。每次使用一个batchsize的样本来更新模型参数 ...
优化器总结 机器学习中,有很多优化方法来试图寻找模型的最优解。比如神经网络中可以采取最基本的梯度下降法。 梯度下降法(Gradient Descent) 梯度下降法是最基本的一类优化器,目前主要分为三种梯度下降法:标准梯度下降法(GD, Gradient Descent),随机梯度下降 ...