本节中的代码大量使用『TensorFlow』分布式训练_其一_逻辑梳理中介绍的概念,是成熟的多机分布式训练样例 一、基本概念 Cluster、Job、task概念:三者可以简单的看成是层次关系,task可以看成每台机器上的一个进程,多个task组成job;job又有:ps、worker两种 ...
本文目的 在介绍estimator分布式的时候,官方文档由于版本更新导致与接口不一致。具体是:在estimator分布式当中,使用dataset作为数据输入,在 . 版本中,数据训练只是dataset的数据,就是所有设备加起来,跑一遍数据。 而在 . 版本中,训练数据是dataset的数据乘以分 布式的设备数。也就是说,在每个设备当中都会完整地跑一遍dataset的所有数据。 . 版本读取 . 在 ...
2019-09-04 15:09 0 767 推荐指数:
本节中的代码大量使用『TensorFlow』分布式训练_其一_逻辑梳理中介绍的概念,是成熟的多机分布式训练样例 一、基本概念 Cluster、Job、task概念:三者可以简单的看成是层次关系,task可以看成每台机器上的一个进程,多个task组成job;job又有:ps、worker两种 ...
1,PS-worker架构 将模型维护和训练计算解耦合,将模型训练分为两个作业(job): 模型相关作业,模型参数存储、分发、汇总、更新,有由PS执行 训练相关作业,包含推理计算、梯度计算(正向/反向传播),由worker执行 该架构下,所有的woker共享PS上的参数,并按 ...
分布式训练 深度学习中,越来越多的场景需要分布式训练。由于分布式系统面临单机单卡所没有的分布式任务调度、复杂的资源并行等问题,因此,通常情况下,分布式训练对用户有一定的技术门槛。 在 OneFlow 中,通过顶层设计与工程创新,做到了 分布式最易用,用户不需要特别改动网络结构和业务逻辑代码 ...
http://c.biancheng.net/view/2004.html 本节以分布式方式训练完整的 MNIST 分类器。 该案例受到下面博客文章的启发:http://ischlag.github.io/2016/06/12/async-distributed-tensorflow/,运行 ...
目录 简介 构建步骤 实现方式 Demo演示 一、简介 1) 使用单台机器或者单个GPU/CPU来进行模型训练,训练速度会受资源的影响,因为毕竟单个的设备的计算能力和存储能力具有一定的上限的,针对这个问题,TensorFlow支持分布式模型运算,支持多机器 ...
[翻译] 使用 TensorFlow 进行分布式训练 目录 [翻译] 使用 TensorFlow 进行分布式训练 0x00 摘要 1. 概述 2. 策略类型 2.1 MirroredStrategy ...
1、更换Tensorflow版本后,horovodrun有问题,说没有安装MPI或Gloo。解决:按步骤全部重新安装一遍。理解:不知道Horovod到tensorflow有什么依赖关系。可能也和版本有关系,我尝试了多遍。目前使用tensorflow 1.14.0版本/MPI 4.0.0版本安装环境 ...
1.初始化进程组dist.init_process_group(backend="nccl")backend是后台利用nccl进行通信 2.使样本之间能够进行通信train_sampler = to ...