本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 1.概要很多计算在概念上很直观,但由于输入数据很大,为了能在合理的时间内完成,这些计算必须分布在数以百计数以千计的机器上。例如处理爬取得到的文档、网页请求日志来计算各种衍生数据,如倒排索引 ...
MapReduce是Hadoop的一个并行计算框架,将一个计算任务拆分成为两个阶段分别是Map阶段和Reduce阶段.Map Reduce计算框架充分利用了存储节点 datanode 所在的物理主机的计算资源 内存 CPU 网络 少许磁盘 进行并行计算.MapReduce框架会在所有的存储节点上分别启动一个Node Manager进程实现对存储节点的计算资源的管理和使用.默认情况下Node Man ...
2019-08-29 21:04 0 579 推荐指数:
本文为senlie原创,转载请保留此地址:http://www.cnblogs.com/senlie/ 1.概要很多计算在概念上很直观,但由于输入数据很大,为了能在合理的时间内完成,这些计算必须分布在数以百计数以千计的机器上。例如处理爬取得到的文档、网页请求日志来计算各种衍生数据,如倒排索引 ...
第1章 MapReduce概述 1.1 MapReduce定义 1.2 MapReduce优缺点 1.2.1 优点 1.2.2 缺点 1.3 MapReduce核心思想 MapReduce核心编程思想,如图4-1所示。 图4-1 ...
1. MapReduce 介绍 1.1MapReduce的作用 假设有一个计算文件中单词个数的需求,文件比较多也比较大,在单击运行的时候机器的内存受限,磁盘受限,运算能力受限,而一旦将单机版程序扩展到集群来分布式运行,将极大增加程序的复杂度和开发 ...
大数据软件比较 分布式的简单理解 在分布式系统出现之前,只有通过不断增加单个处理机的频率和性能来缩短数据的处理时间,分布式则将一个复杂的问题切割成很多的子任务,分布到多台机器上并行处理,在保证系统稳定性的同时,最大限度提高系统的运行速度。 MapReduce 模型整体分析 ...
关于MR的工作原理不做过多叙述,本文将对MapReduce的实例WordCount(单词计数程序)做实践,从而理解MapReduce的工作机制。 WordCount: 1.应用场景,在大量文件中存储了单词,单词之间用空格分隔 2.类似场景:搜索引擎中,统计最流行的N个搜索词 ...
第3章 MapReduce框架原理3.1 InputFormat数据输入3.1.1 切片与MapTask并行度决定机制3.1.2 Job提交流程源码和切片源码详解3.1.3 FileInputFormat切片机制3.1.4 CombineTextInputFormat切片机制3.1.5 ...
系统优化:通过分析计算系统的数据运行情况,判断计算系统对内存、CPU、Instance 个数这些资源 ...
通俗理解MapReduce原理 2.2 了解MR实现词频统计的执行流程 2.3 读懂 ...