算的的上是自己搭建的第一个卷积神经网络。网络结构比较简单。 输入为单通道的mnist数据集。它是一张28*28,包含784个特征值的图片 我们第一层输入,使用5*5的卷积核进行卷积,输出32张特征图,然后使用2*2的池化核进行池化 输出14*14的图片 第二层 使用5*5的卷积和进行卷积 ...
darknet本来最开始学的是https: github.com pjreddie darknetyolo 作者自己开发的,但是它很久不更新了而且mAP值不好观察,于是另外有个https: github.com AlexeyAB darknetfork了它,然后在它上面给出了更精彩的实现,比如支持windows,还有改了一些bug,以及最重要支持训练时候mAP图形化观察 我的远程服务器操作系统是 ...
2019-08-28 10:49 0 384 推荐指数:
算的的上是自己搭建的第一个卷积神经网络。网络结构比较简单。 输入为单通道的mnist数据集。它是一张28*28,包含784个特征值的图片 我们第一层输入,使用5*5的卷积核进行卷积,输出32张特征图,然后使用2*2的池化核进行池化 输出14*14的图片 第二层 使用5*5的卷积和进行卷积 ...
代码来源:https://github.com/eriklindernoren/ML-From-Scratch 卷积神经网络中卷积层Conv2D(带stride、padding)的具体实现:https://www.cnblogs.com/xiximayou/p/12706576.html ...
针对回归训练卷积神经网络 此示例使用: Image Processing Toolbox Deep Learning Toolbox Statistics and Machine Learning Toolbox ...
先简单理解一下卷积这个东西。 (以下转自https://blog.csdn.net/bitcarmanlee/article/details/54729807 知乎是个好东西) 1.知乎上排名最高的解释 首先选取知乎上对卷积物理意义解答排名最靠前的回答。 不推荐用“反转/翻转/反褶/对称 ...
的全部(全像素全连接),并且只是简单的映射,并没有对物体进行抽象处理。 谁对谁错呢?卷积神经网络(C ...
卷积神经网络这个词,应该在你开始学习人工智能不久后就听过了,那究竟什么叫卷积神经网络,今天我们就聊一聊这个问题。 不用思考,左右两张图就是两只可爱的小狗狗,但是两张图中小狗狗所处的位置是不同的,左侧图片小狗在图片的左侧,右侧图片小狗在图片的右下方,这样如果去用图片特征识别出来的结果,两张图 ...
一、学习心得及问题 心得 赵亮:对于卷积神经网络的定义有了初步的理解,卷积神经网络在图片分类、检索、分割、检测,人脸识别等领域有广泛的应用。使用局部关联、参数共享的方式解决了全连接网络过拟合的缺点。同时也了解了卷积的具体含义,对AlexNet、ZFNet、VGG等典型的神经网络结构有了初步 ...
在上篇中介绍的输入层与隐含层的连接称为全连接,如果输入数据是小块图像,比如8×8,那这种方法是可行的,但是如果输入图像是96×96,假设隐含层神经元100个,那么就有一百万个(96×96×100)参数需要学习,向前或向后传播计算时计算时间也会慢很多。 解决这类问题的一种简单 ...