原文:对抗生成网络 Generative Adversarial Networks

. Basic idea 基本任务:要得到一个generator,能够模拟想要的数据分布。 一个低维向量到一个高维向量的映射 discriminator就像是一个score function。 如果想让generator生成想要的目标数据,就把这些真实数据作为discriminator的输入,discriminator的另一部分输入就是generator生成的数据。 . 初始化generator ...

2019-08-27 23:27 0 1864 推荐指数:

查看详情

生成对抗网络 Generative Adversarial Networks

转自:https://zhuanlan.zhihu.com/p/26499443 生成对抗网络GAN是由蒙特利尔大学Ian Goodfellow教授和他的学生在2014年提出的机器学习架构。 要全面理解生成对抗网络,首先要理解的概念是监督式学习和非监督式学习。监督式学习是指基于大量带有 ...

Thu Jun 22 05:15:00 CST 2017 0 3780
生成对抗网络--Generative Adversarial Networks (GAN)

@ 目录 一、简介 二、原理 三、网络结构 四、实例:自动生成数字0-9 五、训练GAN的技巧 六、源码 打赏 一、简介 ●lan Goodfellow 2014年提出 ●非监督式学习任务 ●使用两个深度神经网络: Generator ...

Tue May 26 19:30:00 CST 2020 0 575
生成对抗网络Generative Adversarial Networks,GAN)初探

1. 从纳什均衡(Nash equilibrium)说起 我们先来看看纳什均衡的经济学定义: 所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略 ...

Thu Oct 31 19:18:00 CST 2019 0 1592
Generative Adversarial Nets(生成对抗网络)

  生成对抗网络通过一个对抗步骤来估计生成模型,它同时训练两个模型:一个是获取数据分布的生成模型$G$,一个是估计样本来自训练数据而不是$G$的概率的判别模型$D$。$G$的训练步骤就是最大化$D$犯错的概率。这个框架对应于一个二元极小极大博弈。在任意函数$G$和$D$的空间中,存在唯一解,$G ...

Tue Aug 28 23:33:00 CST 2018 0 1076
对抗生成网络

对抗生成网络GAN(Generative Adversarial Networks)是由蒙特利尔大学Ian Goodfellow在2014年提出的机器学习架构,与之前介绍的神经网络不同,GAN最初是作为一种无监督的机器学习模型,对抗生成网络的变体也有很多,如GAN、DCGAN、CGAN、ACGAN ...

Fri Apr 23 05:23:00 CST 2021 0 264
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM