【业务场景】 在Spark的统计开发过程中,肯定会遇到类似小维表join大业务表的场景,或者需要在算子函数中使用外部变量的场景(尤其是大变量,比如100M以上的大集合),那么此时应该使用Spark的广播(Broadcast)功能来提升性能。 【原理说明 ...
Spark性能调优:广播大变量broadcast 原文链接:https: blog.csdn.net leen article details 概要 有时在开发过程中,会遇到需要在算子函数中使用外部变量的场景 尤其是大变量,比如 M以上的大集合 ,那么此时就应该使用Spark的广播 Broadcast 功能来提升性能。 在算子函数中使用到外部变量时,默认情况下,Spark会将该变量复制多个副本,通 ...
2019-08-26 11:34 0 1252 推荐指数:
【业务场景】 在Spark的统计开发过程中,肯定会遇到类似小维表join大业务表的场景,或者需要在算子函数中使用外部变量的场景(尤其是大变量,比如100M以上的大集合),那么此时应该使用Spark的广播(Broadcast)功能来提升性能。 【原理说明 ...
一、 广播变量 广播变量允许程序员将一个只读的变量缓存在每台机器上,而不用在任务之间传递变量。广播变量可被用于有效地给每个节点一个大输入数据集的副本。Spark还尝试使用高效地广播算法来分发变量,进而减少通信的开销。 Spark的动作通过一系列的步骤执行,这些步骤由分布式的洗牌操作 ...
A broadcast variable. Broadcast variables allow the programmer to keep a read-only variable cached on each machine rather than shipping a copy ...
1、spark汇聚失败 出错原因,hive默认配置中parquet和动态分区设置太小 2.hive数据入hbase报错 出现报错原因: executor_memory和dirver_memory太小,在增大内存后还会出现连接超时的报错 解决连接超时 ...
Spark性能调优之Shuffle调优 • Spark底层shuffle的传输方式是使用netty传输,netty在进行网络传输的过程会申请堆外内存(netty是零拷贝),所以使用了堆外内存 ...
总结一下spark的调优方案--性能调优: 一、调节并行度 1、性能上的调优主要注重一下几点: Excutor的数量 每个Excutor所分配的CPU的数量 每个Excutor所能分配的内存量 Driver端分配的内存数量 2、如何分配资源 ...
数据接收并行度调优(一) 通过网络接收数据时(比如Kafka、Flume),会将数据反序列化,并存储在Spark的内存中。如果数据接收称为系统的瓶颈,那么可以考虑并行化数据接收。 每一个输入DStream都会在某个Worker的Executor上启动一个Receiver ...
spark作业性能调优 优化的目标 保证大数据量下任务运行成功 降低资源消耗 提高计算性能 一、开发调优: (1)避免创建重复的RDD RDD lineage,也就是“RDD的血缘关系链” 开发RDD lineage极其冗长的Spark作业时,创建多个代表 ...