原文:sklearn中的KMeans算法

聚类算法又叫做 无监督分类 ,其目的是将数据划分成有意义或有用的组 或簇 。这种划分可以基于我们的业务需求或建模需求来完成,也可以单纯地帮助我们探索数据的自然结构和分布。 KMeans算法将一组N个样本的特征矩阵X划分为K个无交集的簇,直观上来看是簇是一组一组聚集在一起的数据,在一个簇中的数据就认为是同一类。簇就是聚类的结果表现。簇中所有数据的均值通常被称为这个簇的 质心 centroids 。 ...

2019-08-26 10:41 0 463 推荐指数:

查看详情

Kmeans聚类算法Sklearn实现

一、KMeans算法原理 1.1 KMeans算法关键概念:簇与质心 簇:KMeans算法将一组N个样本的特征矩阵X划分为K个无交集的簇,直观上看是一组一组聚集在一起的数据,在一个簇的数据就认为是同一类。簇就是聚类的结果表现。 质心:簇中所有数据的均值U通常被认为这个簇的“质心 ...

Mon May 10 04:12:00 CST 2021 0 2986
sklearn KMeans聚类算法(总结)

基本原理 Kmeans是无监督学习的代表,没有所谓的Y。主要目的是分类,分类的依据就是样本之间的距离。比如要分为K类。步骤是: 随机选取K个点。 计算每个点到K个质心的距离,分成K个簇。 计算K个簇样本的平均值作新的质心 循环2、3 位置不变,距离完成 距离 ...

Thu Nov 08 02:40:00 CST 2018 0 4932
sklearn实践(一):kmeans聚类

sklearn实践(一):kmeans聚类 实践往往比理论要经历更多的挫折。 一、数据处理 官方给的案例里用的都是sklearn自带的数据集,只要import之后便万事大吉,但实际我们采用的数据往往没有那么规整,也不是可以一下就fit到模型里去的。经过这次经历,打算整理一下大致思路 ...

Sun Jul 12 18:57:00 CST 2020 0 3798
Kmeans算法

1.Kmeans算法 1.1算法思想 kmeans算法又名k均值算法,是一个重复移动类中心点的过程,把类的中心点,也称重心(centroids),移动到其包含成员的平均位置,然后重新划分其内部成员。k是算法计算出的超参数,表示类的数量;Kmeans可以自动分配样本到不同的类,但是不能决定 ...

Sun Sep 08 18:48:00 CST 2019 0 447
Kmeans算法

1、概述 该方法属于无监督学习算法(无y值)。根据已有的数据,利用距离远近的思想将目标数据集聚为指定的k个簇。簇内样本越相似,聚类的效果越好。需要注意的是如若数据存在量纲上的差异,必须先进行标签化处理。或者数据集中含有离散型字符变量,需先设置成哑变量或进行数值化。对于未知簇个数的数据集,需要先 ...

Thu Oct 31 06:48:00 CST 2019 0 409
聚类kmeans算法在yolov3的应用

yolov3 kmeans yolov3在做boundingbox预测的时候,用到了anchor boxes.这个anchors的含义即最有可能的object的width,height.事先通过聚类得到.比如某一个feature map cell,我想对这个feature map cell预测出 ...

Tue May 28 23:39:00 CST 2019 0 4805
 
粤ICP备18138465号  © 2018-2025 CODEPRJ.COM