1.导入必备的包 2.定义mnist数据的格式变换 3.下载数据集,定义数据迭代器 4.定义全连接神经网络(多层感知机)(若是CNN卷积神经网络,则在网络中添加几个卷积层即可 ...
环境: pytorch . cuda . ubuntu . 该网络有 层,第一层input layer,有 个神经元 MNIST数据集是 的单通道图片,故有 个神经元 。第二层为hidden layer,设置为 个神经元。最后一层是输出层,有 个神经元 分类任务 。在第二层之后还有个ReLU函数,进行非线性变换。 结果: . ...
2019-08-14 22:47 2 2217 推荐指数:
1.导入必备的包 2.定义mnist数据的格式变换 3.下载数据集,定义数据迭代器 4.定义全连接神经网络(多层感知机)(若是CNN卷积神经网络,则在网络中添加几个卷积层即可 ...
之前没有学过tensorflow,所以使用tensorflow来对mnist数据进行识别,采用最简单的全连接神经网络,第一层是784,(输入层),隐含层是256,输出层是10 ,相关注释卸载程序中。 ...
记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了。自从接触pytorch以来,一直想写点什么。曾经在2017年5月,Andrej Karpathy发表的一篇Twitter,调侃道:l've been using PyTorch a few ...
Andrew Kirillov 著 Conmajia 译 2019 年 1 月 12 日 原文发表于 CodeProject(2018 年 9 月 28 日). 中文版有小幅修改,已获作者本人授权. 本文介绍了如何使用 ANNT 神经网络库生成前馈全连接神经网络并应用到问题求解 ...
第一张图包括8层LeNet5卷积神经网络的结构图,以及其中最复杂的一层S2到C3的结构处理示意图。 第二张图及第三张图是用tensorflow重写LeNet5网络及其注释。 这是原始的LeNet5网络: 下面是改进后的LeNet5网络: ...
代码已经发布到了github:https://github.com/roadwide/AI-Homework 如果帮到你了,希望给个star鼓励一下 1 BP神经网络 1.1算法介绍 反向传播(英语:Backpropagation,缩写为BP)是"误差反向传播"的简称,是一种与最优化方法 ...
基于自动编码机(autoencoder),这里网络的层次结构为一个输入层,两个隐层,后面再跟着一个softmax分类器: 采用贪婪算法,首先把input和feature1看作一个自动编码机,训练出二者之间的参数,然后用feature1层的激活值作为输出,输入到feature2,即把 ...