黄文坚的tensorflow实战一书中的第四章,讲述了tensorflow实现多层感知机。Hiton早年提出过自编码器的非监督学习算法,书中的代码给出了一个隐藏层的神经网络,本人扩展到了多层,改进了代码。实现多层神经网络时,把每层封装成一个NetLayer对象(本质是单向链表),然后计算隐藏层输出 ...
,自编码器简介 传统机器学习任务很大程度上依赖于好的特征工程,比如对数值型,日期时间型,种类型等特征的提取。特征工程往往是非常耗时耗力的,在图像,语音和视频中提取到有效的特征就更难了,工程师必须在这些领域有非常深入的理解,并且使用专业算法提取这些数据的特征。深度学习则可以解决人工难以提取有效特征的问题,它可以大大缓解机器学习模型对特征工程的依赖。深度学习在早期一度被认为是一种无监督的特征学习 U ...
2019-09-06 19:21 0 1542 推荐指数:
黄文坚的tensorflow实战一书中的第四章,讲述了tensorflow实现多层感知机。Hiton早年提出过自编码器的非监督学习算法,书中的代码给出了一个隐藏层的神经网络,本人扩展到了多层,改进了代码。实现多层神经网络时,把每层封装成一个NetLayer对象(本质是单向链表),然后计算隐藏层输出 ...
]. Neurocomputing,2003,51. 多层感知器由简单的相互连接的神经元或节点组成,如图1所示。 ...
背景简介 TensorFlow实现讲解 设计新思路: 参数初始化新思路: 主程序: 图结构实际实现 Version1: 导入包: import numpy as np import ...
稀疏自编码器的学习结构: 稀疏自编码器Ⅰ: 神经网络 反向传导算法 梯度检验与高级优化 稀疏自编码器Ⅱ: 自编码算法与稀疏性 可视化自编码器训练结果 Exercise: Sparse Autoencoder 自编码算法与稀疏性 已经讨论了神经网络在有 ...
部分内容来自:http://ufldl.stanford.edu/wiki/index.php/%E6%A0%88%E5%BC%8F%E8%87%AA%E7%BC%96%E7%A0%81%E7%AE%97%E6%B3%95 栈式自编码神经网络是一个由多层稀疏自编码器组成的神经网络,其前一层自编码器 ...
引言 前面三篇文章介绍了变分推断(variational inference),这篇文章将要介绍变分自编码器,但是在介绍变分自编码器前,我们先来了解一下传统的自编码器。 自编码器 自编码器(autoencoder)属于无监督学习模型(unsupervised learning ...
数据压缩算法,其中压缩和解压缩过程是有损的。自编码训练过程,不是无监督学习而是自监督学习。 自编码器(AutoEnc ...
稀疏自编码器的学习结构: 稀疏自编码器Ⅰ: 神经网络 反向传导算法 梯度检验与高级优化 稀疏自编码器Ⅱ: 自编码算法与稀疏性 可视化自编码器训练结果 Exercise: Sparse Autoencoder 稀疏自编码器Ⅰ这部分先简单讲述神经网络的部分,它和稀疏 ...