背景 由项目中需要根据一些已有数据学习出一个y=ax+b的一元二项式,给定了x,y的一些样本数据,通过梯度下降或最小二乘法做多项式拟合得到a、b,解决该问题时,首先想到的是通过spark mllib去学习,可是结果并不理想:少量的文档,参数也很难调整。于是转变了解决问题的方式:采用了最小二乘法做 ...
一个复杂的多项式可以 过拟合 任意数据,言外之意是多项式函数可以接近于任何函数,这是什么道理呢 泰勒公式 欲理解多项式函数的过拟合,必先理解泰勒公式。 泰勒公式是一种计算近似值的方法,它是一个用函数某点的信息描述在该点附近取值的公式。已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来逼近函数在这一点的邻域中的值。 如果f x 在x 处具有任意阶导数,那么泰勒公 ...
2019-08-07 15:58 0 1152 推荐指数:
背景 由项目中需要根据一些已有数据学习出一个y=ax+b的一元二项式,给定了x,y的一些样本数据,通过梯度下降或最小二乘法做多项式拟合得到a、b,解决该问题时,首先想到的是通过spark mllib去学习,可是结果并不理想:少量的文档,参数也很难调整。于是转变了解决问题的方式:采用了最小二乘法做 ...
crv_fit.h //多项式曲线拟合 f(x)=a0+a1x+a2x^2+a3x^3+...anx^n class Crv_fit { public : Crv_fit(void); void clear(void); //~Crv_fit(void); public ...
概念 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。 原理 [原理部分由个人根据互联网上的资料进行总结,希望对大家能有用] 给定数据点pi(xi,yi),其中i=1,2,…,m。求近似曲线y= φ(x ...
概念 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。 原理 [原理部分由个人根据互联网上的资料进行总结,希望对大家能有用] 给定数据点pi(xi,yi),其中i=1,2,…,m。求近似 ...
最小二乘法多项式曲线拟合原理与实现 概念 最小二乘法多项式曲线拟合,根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y= φ(x)。 原理 给定数据点pi(xi,yi),其中i=1,2,…,m。求近似曲线y= φ(x)。并且使得近似曲线与y=f(x)的偏差 ...
远处有一座大楼,小明想要测量大楼的高度,他想到了一个好办法: 小明找到一根长度是y1的木棍插在地上,当他趴在 A点时,木棍的顶端正好遮住楼顶,此时他记录下自己的观察点到木棍的距离x1 。 ...
多元函数拟合。如 电视机和收音机价格多销售额的影响,此时自变量有两个。 python 解法: 拟合的各项评估结果和参数都打印出来了,其中结果函数为: f(sales) = β0 + β1*[TV] + β2*[radio] f(sales) = 2.9211 ...
已知数据点$p_i(x_i, y_i), i = 1, 2, ..., n$,求近似曲线$g(x, y)$, 使得近似曲线与$f(x, y)$的偏差最小。(为了使计算简单,以$f(x, y)-g(x, y)$的平方和最小作为目标函数。) 多项式拟合 设待拟合多项式为:$y = g(x ...