0 前言 本文承接上一篇博文拉格朗日乘子法和KKT条件http://www.cnblogs.com/liaohuiqiang/p/7805954.html,讲讲拉格朗日对偶性的问题。 在约束优化问题中,常常用拉格朗日对偶性来将原始问题转为对偶问题,通过解对偶问题的解来得到原始问题的解 ...
目录 拉格朗日对偶性 Lagrange duality . 从原始问题到对偶问题 . 弱对偶与强对偶 . KKT条件 Reference: 拉格朗日对偶性 Lagrange duality . 从原始问题到对偶问题 对偶性是优化理论中一个重要的部分,带约束的优化问题是机器学习中经常遇到的问题,这类问题都可以用如下形式表达 begin aligned min amp f x s.t. amp g ...
2019-08-05 16:20 0 3632 推荐指数:
0 前言 本文承接上一篇博文拉格朗日乘子法和KKT条件http://www.cnblogs.com/liaohuiqiang/p/7805954.html,讲讲拉格朗日对偶性的问题。 在约束优化问题中,常常用拉格朗日对偶性来将原始问题转为对偶问题,通过解对偶问题的解来得到原始问题的解 ...
在约束最优化问题中,常用拉格朗日对偶性将原始问题转换为对偶问题求解。 广义拉格朗日函数 称最优化问题 $\begin{equation} \begin{array}{lcl} \min\limits_{x\in R^n} f(x)\\ \begin{aligned} \text ...
引言:尝试用最简单易懂的描述解释清楚机器学习中会用到的拉格朗日对偶性知识,非科班出身,如有数学专业博友,望多提意见! 1.原始问题 假设是定义在上的连续可微函数(为什么要求连续可微呢,后面再说,这里不用多想),考虑约束最优化问题: 称为约束最优化问题的原始问题 ...
1. 感知机原理(Perceptron) 2. 感知机(Perceptron)基本形式和对偶形式实现 3. 支持向量机(SVM)拉格朗日对偶性(KKT) 4. 支持向量机(SVM)原理 5. 支持向量机(SVM)软间隔 6. 支持向量机(SVM)核函数 1. 前言 在约束最优化问题 ...
拉格朗日对偶问题 前情提要:拉格朗日函数 拉格朗日对偶函数 原问题 \[\min f_0(x)\\ \begin{align*} s.t. \ &f_i(x) \le 0 \quad &i=1,2,\cdots,m\\ &h_i(x)=0 \quad & ...
本文承接上一篇 约束优化方法之拉格朗日乘子法与KKT条件,将详解一些拉格朗日对偶的内容。都是一些在优化理论中比较简单的问题或者一些特例,复杂的没见过,但是简单的刚接触都感觉如洪水猛兽一般,所以当真是学海无涯。 在优化理论中,目标函数 $f(x)$ 会有多种形式:如果目标函数和约束条件都为变量 ...
拉格朗日对偶 对偶是最优化方法里的一种方法,它将一个最优化问题转换成另外一个问题,二者是等价的。拉格朗日对偶是其中的典型例子。对于如下带等式约束和不等式约束的优化问题: 与拉格朗日乘数法类似,构造广义拉格朗日函数 ...