Spark数据本地化-->如何达到性能调优的目的 1.Spark数据的本地化:移动计算,而不是移动数据 2.Spark中的数据本地化级别: TaskSetManager 的 Locality ...
. 数据本地化的级别: PROCESS LOCAL task要计算的数据在本进程 Executor 的内存中。 NODE LOCAL a task所计算的数据在本节点所在的磁盘上。 b task所计算的数据在本节点其他Executor进程的内存中。 NO PREF task所计算的数据在关系型数据库中,如mysql。 RACK LOCAL task所计算的数据在同机架的不同节点的磁盘或者Exec ...
2019-08-05 09:51 0 436 推荐指数:
Spark数据本地化-->如何达到性能调优的目的 1.Spark数据的本地化:移动计算,而不是移动数据 2.Spark中的数据本地化级别: TaskSetManager 的 Locality ...
一、前述 Spark中调优大致分为以下几种 ,代码调优,数据本地化,内存调优,SparkShuffle调优,调节Executor的堆外内存。 二、具体 1、代码调优 1、避免创建重复的RDD,尽量使用同一个RDD 2、对多次使用的RDD进行持久化 如何选择一种最合适的持久化 ...
一 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多。数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能。 1.1数据倾斜发生时的现象 绝大多数task执行得都非常快,但个别 ...
SparkStreaming拉取Kafka中数据,处理后入库。整个流程速度很慢,除去代码中可优化的部分,也在spark集群中找原因。 发现: 集群在处理数据时存在移动数据与移动计算的区别,也有些其他叫法,如:数据本地化、计算本地化、任务本地化等。 自己简单理解: 假设集群有6个节点 ...
摘抄自:https://tech.meituan.com/spark-tuning-pro.html 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多。数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题 ...
【Java序列化与反序列化】 Java序列化是指把Java对象转换为字节序列的过程;而Java反序列化是指把字节序列恢复为Java对象的过程。序列化使用场景:1.数据的持久化,通过序列化可以把数据永久地保存到硬盘上(通常存放在文件里)。2.远程通信,即在网络上传送对象的字节序列。 这篇文章写 ...
一、数据倾斜发生的原理 原理:在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作。此时如果某个key对应的数据量特别大的话,就会发生数据倾斜。数据倾斜只会发生在shuffle过程中。常用的并且可能会触发 ...
【数据倾斜及调优概述】 大数据分布式计算中一个常见的棘手问题——数据倾斜: 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作。此时如果某个key对应的数据量特别大的话,就会发生数据倾斜 ...