目录 一、质因数分解的基本定理 二、模板-质因数分解 一、质因数分解的基本定理 \(\forall N \in (1,\infty)\)都能唯一分解成有限个质数的乘积,可写作: \[N=P_1^{c_1}P_2^{c_2}...P_m^{c_m ...
质因数分解的复杂是公认,这也是我们将他作为 RSA 一种广泛使用的公钥加密算法 的数学难题的原因。 N P Q P Q是质数 ,n length of N in bit 对于这么一个N,我们因数分解得到结果的时间复杂度是 n ,因为这个复杂,所以也有一堆的数学家在努力降低这个的时间复杂度,目前的优化结果的时间复杂度是 sqrt n 。 那么量子是否能够有更好的结果呢 在讲因数分解之前,需要先提周期 ...
2019-08-02 17:49 0 929 推荐指数:
目录 一、质因数分解的基本定理 二、模板-质因数分解 一、质因数分解的基本定理 \(\forall N \in (1,\infty)\)都能唯一分解成有限个质数的乘积,可写作: \[N=P_1^{c_1}P_2^{c_2}...P_m^{c_m ...
有一类问题,要求我们将一个正整数x,分解为两个非平凡因子(平凡因子为1与x)的乘积x=ab。 显然我们需要先检测x是否为素数(如果是素数将无解),可以使用Miller-Rabin算法来进行测试。 大数分解最简单的思想也是试除法,就是从2到sqrt(n),一个一个的试验,直到除到1或者循环完 ...
Pollard-Rho 是一个很神奇的算法,用于在 $O(n^{\frac{1}4}) $的期望时间复杂度内计算合数 n 的某个非平凡因子(除了1和它本身以外能整除它的数)。事书上给出的复杂度是 \(O(\sqrt{p})\) , p 是 n 的某个最小因子,满足 p 与 n/p 互质。虽然是随机 ...
算法讲解(1):质数判断及质因数分解 目录: 什么是质数 什么是质因数分解 算法讲解 1.什么是质数: 质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。 0和1不是质数 除了0,1,质数以外其他的数叫合数 ...
题目: 各位在國小時都學過因數分解,都瞭解怎麼樣用紙筆計算出結果,現在由你來敎電腦做因數分解。 因數分解就是把一個數字,切分為數個質數的乘積,如 12=2^2 * 3 其中, 次方的符號以 ^ 來表示 ...
Pollard Rho快速因数分解。时间复杂度为O(n^(1/4))。 将一个正整数分解质因数。例如:输入90,打印出90=2*3*3*5。 程序分析:对 n 进行分解质因数,应先找到一个最小的质数 i,然后按下述步骤完成: (1)如果这个质数 i 恰等于 n,则说明分解质因数的过程 ...
Int64以内Rabin-Miller强伪素数测试和Pollard 因数分解的算法实现 选取随机数\(a\) 随机数\(b\),检查\(gcd(a - b, n)\)是否大于1,若大于1则\(a - b\)是\(n\)的一个因数 实现1:floyd判环 利用多项式\(f(x)\)迭代 ...
。因 为1没有质因子,1与任何正整数(包括1本身)都是互质。 正整数的因数分解可将正整数表示为一连串的质因子相 ...