现代操作系统都使用分页机制来管理内存,这使得每个程序都拥有自己的地址空间。每当程序使用虚拟地址进行读写时,都必须转换为实际的物理地址,才能真正在内存条上定位数据。如下图所示: 内存地址的转换是通过一种叫做页表(Page Table)的机制来完成的,这是本节要讲解的重点,即: 页表 ...
现代操作系统都使用分页机制来管理内存,这使得每个程序都拥有自己的地址空间。每当程序使用虚拟地址进行读写时,都必须转换为实际的物理地址,才能真正在内存条上定位数据。如下图所示: 内存地址的转换是通过一种叫做页表 Page Table 的机制来完成的,这是本节要讲解的重点,即: 页表是什么 为什么要采用页表机制,而不采用其他机制 虚拟地址如何通过页表转换为物理地址 直接使用数组转换 最容易想到的映射方 ...
2019-07-31 10:02 0 633 推荐指数:
现代操作系统都使用分页机制来管理内存,这使得每个程序都拥有自己的地址空间。每当程序使用虚拟地址进行读写时,都必须转换为实际的物理地址,才能真正在内存条上定位数据。如下图所示: 内存地址的转换是通过一种叫做页表(Page Table)的机制来完成的,这是本节要讲解的重点,即: 页表 ...
关于虚拟地址和物理地址的映射有很多思路,我们可以假设以程序为单位,把一段与程序运行所需要的同等大小的虚拟空间映射到某段物理空间。例如程序A需要 10MB 内存,虚拟地址的范围是从 0X00000000 到 0X00A00000,假设它被映射到一段同等大小的物理内存,地址范围从 0X00100000 ...
引子: 这是逻辑地址(虚拟地址),包括程序中打印的变量地址显示的都是逻辑地址,并不是内存空间上的物理地址。 每条指令在被执行时,读取操作数时需要给出操作数所在的内存地址,这个地址不能是物理主存地址,因为该程序在哪种硬件设置的机器上运行并不能事前确定,那操作系统就不能在此给出对应于某台机 ...
关于虚拟地址和物理地址的映射有很多思路,我们可以假设以程序为单位,把一段与程序运行所需要的同等大小的虚拟空间映射到某段物理空间。 例如程序A需要 10MB 内存,虚拟地址的范围是从 0X00000000 到 0X00A00000,假设它被映射到一段同等大小的物理内存,地址范围 ...
➤背景 一般情况下,Linux系统中,进程的4GB内存空间被划分成为两个部分------用户空间和内核空间,大小分别为0~3G,3~4G。用户进程通常情况下,只能访问用户空间的虚拟地址,不能访问到内核空间。每个进程的用户空间都是完全独立、互不相干的,用户进程各自有不同的页表 ...
原文地址:http://blog.chinaunix.net/uid-20792373-id-2979673.html 参考链接: Linux 虚拟地址与物理地址的映射关系分析 https://blog.csdn.net/ordeder/article/details/41630945 ...
原博客:http://www.cnblogs.com/lanrenxinxin/p/4735027.html 详细的理论讲解都在上面 下面说的是通过windbg手动进行寻址,深入理解 x64: ...
x86下的分页机制有一个特点:PAE模式 PAE模式 物理地址扩展,是基于x86 的服务器的一种功能,它使运行 Windows Server 2003, Enterprise Edition 和 Windows Server 2003,Datacenter Edition 的计算机可以支持 ...