【第1章 绪论】 1.1 引言 学习算法:机器学习所研究的主要内容,是关于在计算机上从数据中产生“模型”的算法,即“学习算法”。 学习算法的作用:1.基于提供的经验数据产生模型; 2.面对新情况时,模型 ...
感觉未来是大数据环境下的人工智能时代呀,不能被时代的马车抛弃,西瓜书这么出名,简要了解一下 绪论 . 引言 机器学习定义:利用经验来改善计算机系统自身的性能 另外一种广泛被引用的英文定义:A computer program is said to learn from experience E with respect to some class of tasks T and performanc ...
2020-04-09 17:27 0 310 推荐指数:
【第1章 绪论】 1.1 引言 学习算法:机器学习所研究的主要内容,是关于在计算机上从数据中产生“模型”的算法,即“学习算法”。 学习算法的作用:1.基于提供的经验数据产生模型; 2.面对新情况时,模型 ...
大部分基础概念知识已经在Machine Learning|Andrew Ng|Coursera 吴恩达机器学习笔记这篇博客中罗列,因此本文仅对感觉重要或不曾了解的知识点做摘记 第1章 绪论 对于一个学习算法a,若它在某问题上比学习算法b好,则必然存在另一些问题,在那里b比a好 ...
数据科学交流群,QQ群号:189158789 ,欢迎各位对数据科学感兴趣的小伙伴的加入! 数据科学交流群,QQ群号:189158789 ,欢迎各位对数据科学感兴趣的小伙伴的加入! ...
今天总结了一些关于机器学习的书籍。其中给我最打动的应该还是周志华老师的西瓜书也就是周志华《机器学习》,然后这里给大家把这个资源的链接放进来,方便下载链接:https://pan.baidu.com/s/1oTJjTkxK0PuV2nRExq1wcA 提取码:odp0真的讲的非常清晰! ...
首先的阶段由卷积层和池化层组成,卷积的节点组织在特征映射块(feature maps)中,每个节点与上一层的feature maps中的局部块通过一系列的权重即过滤器连接。加权和的结果被送到非线性函数中如ReLU。一个feature maps中所有的节点分享相同的过滤器,即共享权重。这种结构 ...
习题 3.1 试析在什么情况下式 \((3.2)\) 中不必考虑偏置项 \(b\) . 书中有提到, 可以把 \(x\) 和 \(b\) 吸收入向量形式 \(\hat{w} = (w;b)\) .此时就不用单独考虑 \(b\) 了. 其实还有很多情况不用, 比如说使用 ...
习题 5.1 试述将线性函数 \(f(\boldsymbol{x}) = \boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}\) 用作神经元激活函数的缺陷. 理想中的激活函数是阶跃函数, 但是它不连续, 不光滑, 所以要一个连续、光滑的函数替代它. 线性 ...
习题 4.1 试证明对于不含冲突数据 (即特征向量完全相同但标记不同) 的训练集, 必存在与训练集一致 (即训练误差为 0)的决策树. 既然每个标记不同的数据特征向量都不同, 只要树的每 ...